Please wait a minute...
材料导报  2023, Vol. 37 Issue (18): 22020065-5    https://doi.org/10.11896/cldb.22020065
  无机非金属及其复合材料 |
二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响
张华1,2,3, 李梦冉1, 徐澎鹏1, 李晶晶1, 张学斌1,3, 刘伟1, 汪金芝4, 苏海林1,2,3,4,*
1 合肥工业大学材料科学与工程学院,合肥 230009
2 安徽瑞德磁电科技有限公司,安徽 芜湖 241002
3 淮北瑞德磁电科技有限公司,安徽 淮北 235000
4 宁波工程学院机器人学院,浙江 宁波 315211
Effect of Second-level Particle Size on the Magnetic Properties of Particle Grading Soft Magnetic Powder Core
ZHANG Hua1,2,3, LI Mengran1, XU Pengpeng1, LI Jingjing1, ZHANG Xuebin1,3, LIU Wei1, WANG Jinzhi4, SU Hailin1,2,3,4,*
1 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
2 Anhui Red Magneto-electric Technology Co., Ltd., Wuhu 241002, Anhui, China
3 Huaibei Red Magneto-electric Technology Co., Ltd., Huaibei 235000, Anhui, China
4 Robotics Institute, Ningbo University of Technology, Ningbo 315211, Zhejiang, China
下载:  全 文 ( PDF ) ( 12616KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 依据颗粒级配理论,选用不同粒径的二级铁硅铝颗粒与一级铁硅铝颗粒和三级羰基铁粉颗粒按固定比例进行混合,制备了一系列级配软磁粉芯,研究了二级颗粒粒径对级配粉芯密度、体电阻率、有效磁导率、直流偏置性能以及损耗等物理性能的影响。结果表明,不同粒径的二级颗粒主要通过改变粉芯的孔隙率和调节各级颗粒在粉芯内的分布状态两个途径对粉芯的磁性能产生影响。前者直接影响粉芯密度,而后者主要影响粉芯电阻率。选择适当的二级颗粒粒径有助于同步提高密度和体电阻率,从而有效降低结构退磁场和涡流,促进粉芯磁性能的改善。本研究为颗粒级配在软磁粉芯领域的应用提供了可能的借鉴,为软磁粉芯性能的提高提供了新的思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张华
李梦冉
徐澎鹏
李晶晶
张学斌
刘伟
汪金芝
苏海林
关键词:  软磁粉芯  颗粒级配  二级颗粒  孔隙率  磁性能    
Abstract: Based on the particle grading theory, the second-level Fe-Si-Al particles of different sizes were mixed with the first-level Fe-Si-Al particles and third-level carbonyl-iron particles in a fixed proportion to prepare different graded powder cores. The effects of the second-level particle size on the density, the volume resistivity, the effective permeability, the DC-bias performance and the core loss of graded powder cores were studied. It was found that the size of the second-level particle influences the magnetic properties of powder core through two ways. One is changing the core's porosity, which directly determines the core's density. The other is adjusting the distribution of different particles, which mainly affects the core's resistivity. Suitable second-level particle size is helpful for increasing both the core's density and the volume resistivity. It decreases the structural demagnetizing field and the eddy current within the core and thus results in the improvement of the core's magnetic properties. This study provides a possible reference for the application of particle grading in the field of soft magnetic powder core and introduces new ideas for the improvement of the performance for soft magnetic powder core.
Key words:  soft magnetic powder core    particle grading    second-level particle    porosity    magnetic property
出版日期:  2023-09-25      发布日期:  2023-09-18
ZTFLH:  TM272  
基金资助: 宁波市科技创新2025重大专项(2020Z062);国家电网公司科技项目(5500-202118252A-0-0-00)
通讯作者:  *苏海林,合肥工业大学材料科学与工程学院教授、博士研究生导师。2000年安徽大学物理系电子材料与元器件专业本科毕业,2003年安徽大学物理系材料物理与化学专业硕士毕业,2006年南京大学物理学系纳米磁学组凝聚态物理学专业博士毕业。目前主要从事磁性材料与器件的研究工作。发表论文80余篇,申请发明专利30余项。hailinsu@hfut.edu.cn   
作者简介:  张华,2015年9月于合肥工业大学获得工学学士学位。现为合肥工业大学材料科学与工程学院硕士研究生,在苏海林教授的指导下进行研究。目前主要研究领域为软磁粉芯材料及器件。
引用本文:    
张华, 李梦冉, 徐澎鹏, 李晶晶, 张学斌, 刘伟, 汪金芝, 苏海林. 二级颗粒粒径对颗粒级配软磁粉芯磁性能的影响[J]. 材料导报, 2023, 37(18): 22020065-5.
ZHANG Hua, LI Mengran, XU Pengpeng, LI Jingjing, ZHANG Xuebin, LIU Wei, WANG Jinzhi, SU Hailin. Effect of Second-level Particle Size on the Magnetic Properties of Particle Grading Soft Magnetic Powder Core. Materials Reports, 2023, 37(18): 22020065-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22020065  或          http://www.mater-rep.com/CN/Y2023/V37/I18/22020065
1 Silveyra J M, Ferrara E, Huber D L, et al. Science, 2018, 362(6413), 418.
2 Périgo E A, Weidenfeller B, Kollár P, et al. Applied Physics Reviews, 2018, 3(5), 031301.
3 Ni J L, Hu F, Feng S J, et al. Journal of Alloys and Compounds, 2021, 887, 161337.
4 Pan Y F, Peng J G, Qing L W, et al. Materials Research Express, 2020, 7(1), 016115.
5 Zhang L, Yang B, Cao Y. Materials Research Innovations, 2014, 18, 610.
6 Li Z C, Dong Y Q, Li F S. Journal of Materials Science-Materials in Electronics, 2017, 2(28), 1180.
7 Sun H B, Wang C, Wang J H. Journal of Magnetism and Magnetic Materials, 2020, 502, 166548.
8 Hsiang H I, Fan L F, Hung, J J. Journal of Magnetism and Magnetic Materials, 2018, 447, 1.
9 Jakubas A, Najgebauer M. Journal of Electrical Engineering-Elektrotechnicky Casopis, 2018, 6(69), 442.
10 Shi X Y, Chen X Y, Wan K, et al. Journal of Magnetism and Magnetic Materials, 2021, 534, 168040.
11 Zhang H, Zhu X, Zhang X B, et al. Journal of Magnetism and Magnetic Materials, 2022, 555, 169325.
12 Bai R R, Zhu Z H, Zhao H, et al. Journal of Magnetism and Magnetic Materials, 2017, 433, 285.
13 Zhong X X, Liu Y, Li J, et al. Journal of Magnetism and Magnetic Materials, 2012, 17(324), 2631.
14 Chen D N, Li K L, Yu H Y, et al. Journal of Magnetism and Magnetic Materials, 2020, 497, 166062.
15 Xu X F, Zhu T B, Li Y W, et al. Journal of the European Ceramic Society, 2022, 2(42), 672.
16 Wang T Y, Ma S H, Wang X H, et al. Construction and Building Mate-rials, 2020, 239, 117761.
17 Fruhstorfer J. Materials Today Communications, 2019, 20, 100550.
18 Larrard L D, Sedran T. Cement and Concrete Research, 1994, 6(24), 997.
19 Altino H O N, Lourenço G A, Ataíde C H. Powder Technology, 2021, 391, 184.
20 Taghvaei A H, Shokrollahi H, Janghorban K. Materials & Design, 2012, 31, 142.
21 Dobák S, Füzer J, Kollár P, et al. Journal of Magnetism and Magnetic Materials, 2017, 426, 320.
22 Yu X R, Li Y J, Yang Q X, et al. IEEE Transactions on Magnetics, 2019, 55, 6100305.
[1] 胡哲, 刘清风. 荷载作用下开裂混凝土中多离子传输的数值研究[J]. 材料导报, 2023, 37(9): 21120077-9.
[2] 何承绪, 高洁, 毛航银, 马光, 陈新, 祝志祥, 张一航, 胡卓超. 退火温度对耐热型取向硅钢组织与磁性能的影响[J]. 材料导报, 2023, 37(8): 21090231-5.
[3] 杨亚苹, 李艳辉, 张伟. 脱合金化法制备纳米多孔铂合金的研究进展[J]. 材料导报, 2023, 37(3): 21020061-7.
[4] 苏丽, 牛荻涛, 黄大观, 张云升, 乔宏霞. 增强珊瑚骨料混凝土毛细吸水性能与预测模型[J]. 材料导报, 2023, 37(15): 22010023-8.
[5] 张爵灵, 王林山, 郑逢时, 胡强, 汪礼敏. 粉末冶金多孔铝的研究进展[J]. 材料导报, 2023, 37(12): 21100151-8.
[6] 刘超, 王有强, 刘化威, 张荣飞. 基于打印参数影响的3D打印混凝土力学性能试验研究[J]. 材料导报, 2023, 37(1): 21110276-7.
[7] 姚维, 郑伯坤, 邱景平, 黄腾龙, 尹旭岩. 外加剂对膨胀充填材料性能的影响[J]. 材料导报, 2022, 36(Z1): 20070045-5.
[8] 刘方, 张昆昆, 罗滔, 马卫卫, 蒋伟. 复杂环境因素下纳米改性混凝土冻融损伤研究[J]. 材料导报, 2022, 36(8): 20100024-5.
[9] 郑皓天, 王子龙, 李翔. 基于纳米晶结构的非晶合金成分设计[J]. 材料导报, 2022, 36(7): 20090031-7.
[10] 张光睿, 姚特, 龚沛, 乔禹, 王婷婷, 梁雨萍, 郝宏波. (Fe81.5Co1.5Ga17)100-xTbx合金结构及其磁性能[J]. 材料导报, 2022, 36(5): 20120138-5.
[11] 周莹, 穆松, 蒲春平, 周霄骋, 李勇泉, 蔡景顺, 谢德擎. 隧道初支混凝土抗冲刷溶蚀技术评价及作用机理[J]. 材料导报, 2022, 36(4): 20120200-8.
[12] 潘琳茹, 李雪莲, 王丽, 孙禄涛, 魏彬彬, 郭春生. 覆铜热处理对Fe80Si9B11非晶铁芯软磁性能的影响:一种改善非晶铁芯温度分布的方法[J]. 材料导报, 2022, 36(3): 20090082-4.
[13] 彭远胜, 欧孝夺, 姬凤玲. 铝土尾矿泡沫轻质土的物理力学性能及细观特征[J]. 材料导报, 2022, 36(17): 21030274-6.
[14] 代楠, 张育新, 李凯霖, 刘晓英, 董必钦, 封丽, 贾兴文. 硅藻土在胶凝材料领域的应用进展[J]. 材料导报, 2022, 36(14): 21030125-9.
[15] 王挺, 高业栋, 恽迪, 王冠, 周毅, 张坤, 郭子萱, 吕亮亮. 金属燃料辐照模型关于孔隙率的改进及快堆金属燃料性能分析程序开发[J]. 材料导报, 2022, 36(11): 21040054-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed