Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24100016-9    https://doi.org/10.11896/cldb.24100016
  无机非金属及其复合材料 |
锂离子电池缺陷检测技术及失效机理分析研究进展
李龙飞1, 郑永泉1, 万旺军2,*, 徐至宏3, 汪清利4, 王琛2, 贺馨平1, 夏新辉1, 夏阳1,*
1 浙江工业大学材料科学与工程学院,杭州 310014
2 浙江省检验检疫科学技术研究院,杭州 311215
3 浙江华云清洁能源有限公司,杭州 310008
4 杭州润辉环保能源科技有限公司,杭州 310020
Research Progress in Failure Analysis and Defect Detection of Lithium-ion Batteries
LI Longfei1, ZHENG Yongquan1, WAN Wangjun2,*, XU Zhihong3, WANG Qingli4, WANG Chen2, HE Xinping1, XIA Xinhui1, XIA Yang1,*
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
2 Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou 311215, China
3 Zhejiang Huayun Cleaning Energy Co., Ltd., Hangzhou 310008, China
4 Hangzhou Runhui Environmental Protection Energy Technology Co., Ltd., Hangzhou 310020, China
下载:  全 文 ( PDF ) ( 41690KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 锂离子电池失效分析和检测技术对认识电池失效机理、监测电池状态、诊断和预警电池故障、评估电池寿命和安全性意义重大,同时对锂离子电池的设计开发和性能提升具有指导价值。本文从“材料-电芯-模组-管理系统”多层级角度对锂离子电池缺陷检测方法进行介绍,并以电池“内生性”失效和“外源性”失效的双视角角度对锂离子电池的失效进行分类,详细讨论了电池缺陷检测技术在锂离子电池双视角失效分析方面的应用。最后,本文提出将失效检测技术与机器学习算法相结合,构建快速高通量检测新体系,并对未来电池失效分析技术进行展望,以期为高安全锂离子电池技术的发展提供重要参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李龙飞
郑永泉
万旺军
徐至宏
汪清利
王琛
贺馨平
夏新辉
夏阳
关键词:  锂离子电池  失效分析  缺陷检测  多层级  双视角    
Abstract: Failure analysis and defect detection technology of lithium-ion batteries play important roles in revealing the failure mechanism, monitoring battery status, diagnosing and warning battery failure, evaluating battery life and safety. Meanwhile, battery failure analysis and defect detection technology significantly guide the design and development of high-performance lithium-ion batteries. This review first introduces the battery defect detection methods from the multi-level perspective of “battery materials-single cell-battery module-battery management system”. It second classifies the battery failure mechanisms from the dual perspectives of “"endogenous" failure and "exogenous" failure” with practical application cases. Finally the paper proposes to combine failure detection technology and machine learning algorithm to build a new system of fast and high-throughput detection strategy, and outlooks the development of battery failure analysis technology, hoping to provide important information and insights for the evolvement of high-safety lithium-ion battery technology.
Key words:  lithium-ion battery    failure analysis    defect detection    multi-level perspective    dual perspective
发布日期:  2025-05-29
ZTFLH:  TK911  
基金资助: 浙江省“领雁”计划项目(2023C01231)
通讯作者:  *万旺军,硕士,杭州海关技术中心国家危险化学品检测重点实验室主任、研究员,主要从事危险货物分类鉴定、锂离子电池安全性评估等。181892505@qq.com
夏阳,博士,浙江工业大学材料科学与工程学院教授、博士研究生导师。主要从事先进二次电池关键材料和技术的基础理论和应用研究工作。nanoshine@zjut.edu.cn   
作者简介:  李龙飞,2023年6月于桂林理工大学获得工学学士学位。现为浙江工业大学材料科学与工程学院硕士研究生,在夏阳教授的指导下进行研究,主要研究领域为高比能锂离子电池材料与器件。
引用本文:    
李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
LI Longfei, ZHENG Yongquan, WAN Wangjun, XU Zhihong, WANG Qingli, WANG Chen, HE Xinping, XIA Xinhui, XIA Yang. Research Progress in Failure Analysis and Defect Detection of Lithium-ion Batteries. Materials Reports, 2025, 39(11): 24100016-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100016  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24100016
1 Huang J S, Mao B H, Wu X Y, et al. Journal of Beijing Jiaotong University(Social Sciences Edition), 2023, 22(2), 107 (in Chinese).
黄俊生, 毛保华, 吴雪妍, 等. 北京交通大学学报(社会科学版), 2023, 22(2), 107.
2 Wang Q Y, Wang S, Zhou G, et al. Acta Physica Sinica, 2018, 67(12), 128501.
3 Stroe D I, Swierczynski M, Kar S K, et al. IEEE Transactions on Industry Applications, 2018, 54(1), 517.
4 Wan X H, Xu X J, Li F K, et al. Small Structures, 2024, 5(3), 2300196.
5 Wang Y, Chen X B, Wang Y X, et al. Energy Storage Science and Technology, 2023, 12(7), 2079 (in Chinese).
王怡, 陈学兵, 王愿习, 等. 储能科学与技术, 2023, 12(7), 2079.
6 Fang W Q, Wen Z X, Chen L, et al. Nano Energy, 2022, 104, 107881.
7 Scipioni R, Jørgensen P S, Hjelm J, et al. ECS Transactions, 2015, 64(22), 97.
8 Thompson L M, Harlow J E, Eldesoky A, et al. Journal of the Electrochemical Society, 2021, 168(2), 020532.
9 Ma S, Ruan Q L, Liu X C, et al. Tungsten, 2024, 6, 504.
10 Ma S, Wan G Y, Yan Z Y, et al. Chinese Chemical Letters, DOI:10. 1016/j. cclet. 2024. 109853.
11 Ren X L, Wang Y J, Ke Q, et al. Journal of Alloys and Compounds, 2024, 1003, 175562.
12 Zhu J G, Dewi D M S, Knapp M, et al. Journal of Power Sources, 2020, 448, 227575.
13 Liu T C, Wang J L, Xu Y, et al. Nano-Micro Letters, 2021, 13, 170.
14 Huang Q R, Zhang X D, Lv X W, et al. Small, 2023, 19(42), 2302086.
15 Mönnighoff X, Friesen A, Konersmann B, et al. Journal of Power Sources, 2017, 352, 56.
16 Lin M Q, Jiang Y S, Du Y T. Journal of Dezhou University, 2024, 40(2), 9 (in Chinese).
林木泉, 江月松, 杜毅涛. 德州学院学报, 2024, 40(2), 9.
17 Zhu X Q, Wang H, Wang X, et al. Journal of Power Sources, 2020, 455, 227939.
18 Son K, Hwang S M, Woo S G, et al. Journal of Industrial and Engineering Chemistry, 2020, 83, 247.
19 Yang Z C, Shen Y, Yang F, et al. In:2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). Wuhan, 2016, pp. 1.
20 Menale C, D’annibale F, Mazzarotta B, et al. Energy, 2019, 182, 57.
21 Mateev V, Marinova I, Kartunov Z. Sensors, 2019, 19(13), 2900.
22 Ding J, Yan Z G, We X C. ISPRS International Journal of Geo-Information, 2021, 10(4), 234.
23 Li H Z, Zhang B J. Alexandria Engineering Journal, 2021, 60(5), 4325.
24 Tian X, Liu R, Wang Z Y, et al. Information Fusion, 2022, 77, 19.
25 Zhu M, Shao Q Q. In:2023 7th International Symposium on Computer Science and Intelligent Control (ISCSIC). Nanjing, China, 2023, pp. 70.
26 Bhaskar K, Kumar A, Bunce J, et al. In:2023 American Control Conference (ACC), San Diego, 2023, pp. 3075.
27 Lin X F, Perez H E, Siegel J B, et al. IEEE Transactions on Control Systems Technology, 2013, 21(5), 1745.
28 He J, Ma R F, Cai Q L, et al. Journal of Mechanical Engineering, 2022, 58(17), 96 (in Chinese).
何晋, 马睿飞, 蔡琦琳, 等. 机械工程学报, 2022, 58(17), 96.
29 Zhao S Y, Ou K, Gu X X, et al. Rare Metals, DOI:10. 1007/s12598-024-02942-z.
30 Giammichele L, D’alessandro V, Falone M, et al. Applied Thermal Engineering, 2022, 205, 117974.
31 Wang S X, Li K X, Tian Y, et al. Applied Thermal Engineering, 2019, 152, 204.
32 Yang X L, Hu X B, Chen Z, et al. Applied Thermal Engineering, 2020, 178, 115634.
33 Jha R K. IEEE Sensors Journal, 2022, 22(1), 6.
34 Raju P, Li Q L. Journal of the Electrochemical Society, 2022, 169(5), 057518.
35 Shao X Y, Zhang D Z, Tang M C, et al. Chemical Engineering Journal, 2024, 495, 153676.
36 Yan W J, Jin Z S, Lin Z Y, et al. Chinese Physics B, 2022, 31(11), 110704.
37 Lyu S Q, Li N, Sun L, et al. Journal of Energy Chemistry, 2022, 72, 14.
38 Wang Z Y, Tang G P, Li J W, et al. Nondestructive Testing, 2010, 32(7), 504 (in Chinese).
王增勇, 汤光平, 李建文, 等. 无损检测, 2010, 32(7), 504.
39 Liu J. Journal of Changzhou University(Natural Science Edition), 2021, 33(1), 15 (in Chinese).
刘娟. 常州大学学报(自然科学版), 2021, 33(1), 15.
40 Blazek P, Westenberger P, Erker S, et al. Journal of Energy Storage, 2022, 52, 104563.
41 Bond T, Gauthier R, Gasilov S, et al. Journal of the Electrochemical Society, 2022, 169(8), 080531.
42 Ebner M, Marone F, Stampanoni M, et al. Science, 2013, 342(6159), 716.
43 Yi M C, Jiang F C, Lu L G, et al. Frontiers in Energy Research, 2021, 9, 806929.
44 Huo H Y, Huang K, Luo W, et al. ACS Energy Letters, 2022, 7(2), 650.
45 Deng Z, Huang Z Y, Shen Y, et al. Joule, 2020, 4(9), 2017.
46 Galiounas E, Tranter T G, Owen R E, et al. Energy and AI, 2022, 10, 100188.
47 Ladpli P, Kopsaftopoulos F, Chang F K. Journal of Power Sources, 2018, 384, 342.
48 Bae J J, Son J T. Journal of Nanoscience and Nanotechnology, 2019, 19(3), 1520.
49 Brand M J, Schuster S F, Bach T, et al. Journal of Power Sources, 2015, 288, 62.
50 Celik-Kucuk A, Abe T. Journal of Power Sources, 2023, 556, 232520.
51 Kalnaus S, Wang Y L, Turner J A. Journal of Power Sources, 2017, 348, 255.
52 Li Y C, Fu X W, Wang Y, et al. Energy Storage Materials, 2019, 16, 589.
53 Moghim M H, Nahvibayani A, Eqra R. Polymer Engineering & Science, 2022, 62(9), 3049.
54 Zhang K, Chen J W, Feng W L, et al. Journal of Power Sources, 2023, 553, 232311.
55 Zheng Y, He Y B, Qian K, et al. Journal of Alloys and Compounds, 2015, 639, 406.
56 Petrich L, Westhoff D, Feinauer J, et al. Computational Materials Science, 2017, 136, 297.
57 Lin M, Xiong J F, Su M T, et al. Chemical Science, 2022, 13(26), 7863.
58 Wang X H, Li D Y, Zhang G. Sensors, 2021, 21, 1944.
59 Han X J, Wang Z R, Wei Z X. Applied Energy, 2021, 302, 117511.
60 Wei Z B, Bhattarai A, Zou C F, et al. Journal of Power Sources, 2018, 390, 261.
61 Xiang D W, Yang C, Li H, et al. IEEE Transactions on Power Electronics, 2023, 38(1), 1166.
[1] 姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
[2] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[3] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[4] 刘志坦, 吴溢凡, 李玉刚, 王纯, 曹炼博, 成先明, 杨可. 掺氢天然气管道氢致损伤及检测技术研究现状[J]. 材料导报, 2025, 39(10): 24040041-8.
[5] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[6] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[7] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[8] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[9] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[10] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[11] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[12] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[13] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[14] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[15] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed