Research Progress in Failure Analysis and Defect Detection of Lithium-ion Batteries
LI Longfei1, ZHENG Yongquan1, WAN Wangjun2,*, XU Zhihong3, WANG Qingli4, WANG Chen2, HE Xinping1, XIA Xinhui1, XIA Yang1,*
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China 2 Zhejiang Academy of Science and Technology for Inspection & Quarantine, Hangzhou 311215, China 3 Zhejiang Huayun Cleaning Energy Co., Ltd., Hangzhou 310008, China 4 Hangzhou Runhui Environmental Protection Energy Technology Co., Ltd., Hangzhou 310020, China
Abstract: Failure analysis and defect detection technology of lithium-ion batteries play important roles in revealing the failure mechanism, monitoring battery status, diagnosing and warning battery failure, evaluating battery life and safety. Meanwhile, battery failure analysis and defect detection technology significantly guide the design and development of high-performance lithium-ion batteries. This review first introduces the battery defect detection methods from the multi-level perspective of “battery materials-single cell-battery module-battery management system”. It second classifies the battery failure mechanisms from the dual perspectives of “"endogenous" failure and "exogenous" failure” with practical application cases. Finally the paper proposes to combine failure detection technology and machine learning algorithm to build a new system of fast and high-throughput detection strategy, and outlooks the development of battery failure analysis technology, hoping to provide important information and insights for the evolvement of high-safety lithium-ion battery technology.
1 Huang J S, Mao B H, Wu X Y, et al. Journal of Beijing Jiaotong University(Social Sciences Edition), 2023, 22(2), 107 (in Chinese). 黄俊生, 毛保华, 吴雪妍, 等. 北京交通大学学报(社会科学版), 2023, 22(2), 107. 2 Wang Q Y, Wang S, Zhou G, et al. Acta Physica Sinica, 2018, 67(12), 128501. 3 Stroe D I, Swierczynski M, Kar S K, et al. IEEE Transactions on Industry Applications, 2018, 54(1), 517. 4 Wan X H, Xu X J, Li F K, et al. Small Structures, 2024, 5(3), 2300196. 5 Wang Y, Chen X B, Wang Y X, et al. Energy Storage Science and Technology, 2023, 12(7), 2079 (in Chinese). 王怡, 陈学兵, 王愿习, 等. 储能科学与技术, 2023, 12(7), 2079. 6 Fang W Q, Wen Z X, Chen L, et al. Nano Energy, 2022, 104, 107881. 7 Scipioni R, Jørgensen P S, Hjelm J, et al. ECS Transactions, 2015, 64(22), 97. 8 Thompson L M, Harlow J E, Eldesoky A, et al. Journal of the Electrochemical Society, 2021, 168(2), 020532. 9 Ma S, Ruan Q L, Liu X C, et al. Tungsten, 2024, 6, 504. 10 Ma S, Wan G Y, Yan Z Y, et al. Chinese Chemical Letters, DOI:10. 1016/j. cclet. 2024. 109853. 11 Ren X L, Wang Y J, Ke Q, et al. Journal of Alloys and Compounds, 2024, 1003, 175562. 12 Zhu J G, Dewi D M S, Knapp M, et al. Journal of Power Sources, 2020, 448, 227575. 13 Liu T C, Wang J L, Xu Y, et al. Nano-Micro Letters, 2021, 13, 170. 14 Huang Q R, Zhang X D, Lv X W, et al. Small, 2023, 19(42), 2302086. 15 Mönnighoff X, Friesen A, Konersmann B, et al. Journal of Power Sources, 2017, 352, 56. 16 Lin M Q, Jiang Y S, Du Y T. Journal of Dezhou University, 2024, 40(2), 9 (in Chinese). 林木泉, 江月松, 杜毅涛. 德州学院学报, 2024, 40(2), 9. 17 Zhu X Q, Wang H, Wang X, et al. Journal of Power Sources, 2020, 455, 227939. 18 Son K, Hwang S M, Woo S G, et al. Journal of Industrial and Engineering Chemistry, 2020, 83, 247. 19 Yang Z C, Shen Y, Yang F, et al. In:2016 International Conference on Probabilistic Methods Applied to Power Systems (PMAPS). Wuhan, 2016, pp. 1. 20 Menale C, D’annibale F, Mazzarotta B, et al. Energy, 2019, 182, 57. 21 Mateev V, Marinova I, Kartunov Z. Sensors, 2019, 19(13), 2900. 22 Ding J, Yan Z G, We X C. ISPRS International Journal of Geo-Information, 2021, 10(4), 234. 23 Li H Z, Zhang B J. Alexandria Engineering Journal, 2021, 60(5), 4325. 24 Tian X, Liu R, Wang Z Y, et al. Information Fusion, 2022, 77, 19. 25 Zhu M, Shao Q Q. In:2023 7th International Symposium on Computer Science and Intelligent Control (ISCSIC). Nanjing, China, 2023, pp. 70. 26 Bhaskar K, Kumar A, Bunce J, et al. In:2023 American Control Conference (ACC), San Diego, 2023, pp. 3075. 27 Lin X F, Perez H E, Siegel J B, et al. IEEE Transactions on Control Systems Technology, 2013, 21(5), 1745. 28 He J, Ma R F, Cai Q L, et al. Journal of Mechanical Engineering, 2022, 58(17), 96 (in Chinese). 何晋, 马睿飞, 蔡琦琳, 等. 机械工程学报, 2022, 58(17), 96. 29 Zhao S Y, Ou K, Gu X X, et al. Rare Metals, DOI:10. 1007/s12598-024-02942-z. 30 Giammichele L, D’alessandro V, Falone M, et al. Applied Thermal Engineering, 2022, 205, 117974. 31 Wang S X, Li K X, Tian Y, et al. Applied Thermal Engineering, 2019, 152, 204. 32 Yang X L, Hu X B, Chen Z, et al. Applied Thermal Engineering, 2020, 178, 115634. 33 Jha R K. IEEE Sensors Journal, 2022, 22(1), 6. 34 Raju P, Li Q L. Journal of the Electrochemical Society, 2022, 169(5), 057518. 35 Shao X Y, Zhang D Z, Tang M C, et al. Chemical Engineering Journal, 2024, 495, 153676. 36 Yan W J, Jin Z S, Lin Z Y, et al. Chinese Physics B, 2022, 31(11), 110704. 37 Lyu S Q, Li N, Sun L, et al. Journal of Energy Chemistry, 2022, 72, 14. 38 Wang Z Y, Tang G P, Li J W, et al. Nondestructive Testing, 2010, 32(7), 504 (in Chinese). 王增勇, 汤光平, 李建文, 等. 无损检测, 2010, 32(7), 504. 39 Liu J. Journal of Changzhou University(Natural Science Edition), 2021, 33(1), 15 (in Chinese). 刘娟. 常州大学学报(自然科学版), 2021, 33(1), 15. 40 Blazek P, Westenberger P, Erker S, et al. Journal of Energy Storage, 2022, 52, 104563. 41 Bond T, Gauthier R, Gasilov S, et al. Journal of the Electrochemical Society, 2022, 169(8), 080531. 42 Ebner M, Marone F, Stampanoni M, et al. Science, 2013, 342(6159), 716. 43 Yi M C, Jiang F C, Lu L G, et al. Frontiers in Energy Research, 2021, 9, 806929. 44 Huo H Y, Huang K, Luo W, et al. ACS Energy Letters, 2022, 7(2), 650. 45 Deng Z, Huang Z Y, Shen Y, et al. Joule, 2020, 4(9), 2017. 46 Galiounas E, Tranter T G, Owen R E, et al. Energy and AI, 2022, 10, 100188. 47 Ladpli P, Kopsaftopoulos F, Chang F K. Journal of Power Sources, 2018, 384, 342. 48 Bae J J, Son J T. Journal of Nanoscience and Nanotechnology, 2019, 19(3), 1520. 49 Brand M J, Schuster S F, Bach T, et al. Journal of Power Sources, 2015, 288, 62. 50 Celik-Kucuk A, Abe T. Journal of Power Sources, 2023, 556, 232520. 51 Kalnaus S, Wang Y L, Turner J A. Journal of Power Sources, 2017, 348, 255. 52 Li Y C, Fu X W, Wang Y, et al. Energy Storage Materials, 2019, 16, 589. 53 Moghim M H, Nahvibayani A, Eqra R. Polymer Engineering & Science, 2022, 62(9), 3049. 54 Zhang K, Chen J W, Feng W L, et al. Journal of Power Sources, 2023, 553, 232311. 55 Zheng Y, He Y B, Qian K, et al. Journal of Alloys and Compounds, 2015, 639, 406. 56 Petrich L, Westhoff D, Feinauer J, et al. Computational Materials Science, 2017, 136, 297. 57 Lin M, Xiong J F, Su M T, et al. Chemical Science, 2022, 13(26), 7863. 58 Wang X H, Li D Y, Zhang G. Sensors, 2021, 21, 1944. 59 Han X J, Wang Z R, Wei Z X. Applied Energy, 2021, 302, 117511. 60 Wei Z B, Bhattarai A, Zou C F, et al. Journal of Power Sources, 2018, 390, 261. 61 Xiang D W, Yang C, Li H, et al. IEEE Transactions on Power Electronics, 2023, 38(1), 1166.