A Review of Cracking Mechanisms and Impact Factors in Lithium-ion Battery Anode Electrode During Drying Process
YAO Jieli1, WU Xiaobo1,2,*, LIU Zipeng1, TANG Fanrong1, LIAO Changping1
1 School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, Hunan, China 2 The Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Abstract: When the graphite anode colloidal dispersion slurry is coated onto a non-porous rigid substrate and dried, the stresses generated during the drying process may cause cracks in the film. These cracks can negatively impact battery performance, accelerate degradation, and shor-ten the battery’s lifespan. Therefore, understanding the crack characteristics and their formation mechanisms is crucial to preventing cracking of the electrode. While many studies and models have been conducted on the drying cracks of colloidal dispersion films, there is relatively little research on the cracking behavior of battery electrode pieces. This article systematically reveals the cracking mechanism and influencing factors during the drying process of electrode films, deeply analyzes the models of microstructural changes and internal stress development in electrode, and summarizes the progress in research on drying-induced cracking of electrode films. Studies have shown that the stress caused by capillary pressure is the main cause of drying-induced crack, which is mainly affected by the material properties of the electrode and the boundary conditions of the film. Additionally, this paper explores the technical challenges associated with inhibiting drying-induced cracking in the electrode, providing valuable insights for addressing the cracking issues in electrode manufacturing.
1 Wang B. Study on the mechanism and characteristics of dry cracking of the negative electrode sheet of lithium battery. Master’s Thesis, Yanshan University, China, 2023 (in Chinese). 王波. 锂电池负极极片干燥开裂机理及裂纹特性研究. 硕士学位论文, 燕山大学, 2023. 2 Lei H, Payne J, Mccormick A, et al. Journal of Applied Polymer Science, 2001, 81(4), 1000. 3 Spry A. Journal of the Geological Society of Australia, 1962, 8(2), 191. 4 Lin Y X, Liu Z, Leng K, et al. Journal of Power Sources, 2016, 309, 221. 5 Ren Z, Zhang X, Liu M, et al. Journal of Power Sources, 2019, 416, 104. 6 Thomas K E. Lithium-ion batteries: thermal and interfacial phenomena, University of California, Berkeley, 2002. 7 De Sa C, Benboudjema F, Thiery M, et al. Cement and Concrete Composites, 2008, 30(10), 947. 8 Luar P, Pease B, Mazzotta G B, et al. ACI Materials Journal, 2007, 104(2), 187. 9 Hallett P, Newson T. European Journal of Soil Science, 2005, 56(1), 31. 10 Kitsunezaki S. Physical Review E, 1999, 60(6), 6449. 11 Chiu R C, Garino T, Cima M. Journal of the American Ceramic Society, 1993, 76(9), 2257. 12 Routh A F. Reports on Progress in Physics, 2013, 76(4), 046603. 13 Sengupta R, Tirumkudulu M S. Soft Matter, 2016, 12(13), 3149. 14 Singh K B, Bhosale L R, Tirumkudulu M S. Langmuir, 2009, 25(8), 4284. 15 Tirumkudulu M S, Russel W B. Langmuir, 2005, 21(11), 4938. 16 Rollag K, Juarez-Robles D, Du Z, et al. ACS Applied Energy Materials, 2019, 2(6), 4464. 17 Routh A F, Russel W B. AIChE Journal, 1998, 44(9), 2088. 18 Routh A F, Russel W B. Langmuir, 1999, 15(22), 7762. 19 Tirumkudulu M S, Russel W B. Langmuir, 2004, 20(7), 2947. 20 Lee W P, Routh A F. Langmuir, 2004, 20(23), 9885. 21 Niu Z X, Yuan S j, Gao H, et al. Materials Reports, 2022, 36(21), 67(in Chinese). 牛朝霞, 袁帅洁, 高晗, 等. 材料导报, 2022, 36(21), 67. 22 Zarzycki J, Prassas M, Phalippou J. Journal of Materials Science, 1982, 17, 3371. 23 Marin A G, Gelderblom H, Lohse D, et al. Physical Review Letters, 2011, 107(8), 085502. 24 Depalo A, Santomaso A C. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 371. 25 Singh K B, Tirumkudulu M S. Physical Review Letters, 2007, 98(21), 218302. 26 Winter M, Besenhard J, Albering J, et al. Progress in Batteries & Battery Materials, 1998, 17, 208-13. 27 Zhang X, Shyy W, Sastry A M. Journal of the Electrochemical Society, 2007, 154(10), A910. 28 Winter M, Novák P, Monnier A. Journal of the Electrochemical Society, 1998, 145(2), 428. 29 Zaghib K, Nadeau G, Kinoshita K. Journal of the Electrochemical Society, 2000, 147(6), 2110. 30 Aifantis K E, Hackney S, Dempsey J. Journal of Power Sources, 2007, 165(2), 874. 31 Wang Y, Dang D, Li D, et al. Journal of Power Sources, 2019, 438(Oct. 31), 226938. 1. 32 Rahani E K, Shenoy V B. Journal of the Electrochemical Society, 2013, 160(8), A1153. 33 Jäckel N, Dargel V, Shpigel N, et al. Journal of Power Sources, 2017, 371, 162. 34 Choi S, Kwont-W, Coskun A, et al. Science, 2017, 357(6348), 279. 35 Xiao X, Liu P, Verbrugge M, et al. Journal of Power Sources, 2011, 196(3), 1409. 36 Du Z, Rollag K, Li J, et al. Journal of Power Sources, 2017, 354, 200. 37 Lazarus V, Pauchard L. Soft Matter, 2011, 7(6), 2552. 38 Li J, Dozier A K, Li Y, et al. Journal of The Electrochemical Society, 2011, 158(6), A689. 39 Sommer A P, Franker-P. Nano Letters, 2003, 3(5), 573. 40 Zhang Y J, Tuning of self-assembly patterns induced by the evaporation of colloidal droplets, Ph. D. Thesis, Northwestern Polytechnical University, China, 2015(in Chinese). 张永建. 胶体液滴的蒸发及其自组装图案调控机制研究. 博士学位论文, 西北工业大学, 2015. 41 Jing G, Ma J. The Journal of Physical Chemistry B, 2012, 116(21), 6225. 42 Lama H, Basavaraj M G, Satapathy D K. Soft Matter, 2017, 13(32), 5445. 43 Han W, Li B, Lin Z. ACS Nano, 2013, 7(7), 6079. 44 Ghosh U U, Chakraborty M, Bhandari A B, et al. Langmuir, 2015, 31(22), 6001. 45 Smith M, Sharp J. Langmuir, 2011, 27(13), 8009. 46 Zhu P, Gastol D, Marshall J, et al. Journal of Power Sources, 2020, 485, 229321. 47 Qiao J, Adams J R, Johannsmann D. Langmuir, 2012, 28(23), 8674. 48 Bacchin P, Brutin D, Davaille A, et al. The European Physical Journal E, 2018, 41, 1. 49 Kakui T, Miyauchi T, Kamiya H. Journal of the European Ceramic Society, 2005, 25(5), 655. 50 Carreras E S, Chabert F, Dunstan D, et al. Journal of Colloid and Interface Science, 2007, 313(1), 160. 51 Koga S, Inasawa S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 95. 52 Keddie J, Routh A F. Fundamentals of latex film formation: processes and properties, Springer Science & Business Media, 2010. 53 Lee W P, Routh A F. Industrial & Engineering Chemistry Research, 2006, 45(21), 6996. 54 Vanpeene V, Villanova J, King A, et al. Advanced Energy Materials, 2019, 9(18), 1803947. 55 Hernandez C R, Etiemble A, Douillard T, et al. Advanced Energy Materials, 2018, 8(6), 1701787. 56 Wang Y, He Y, Xiao R, et al. Journal of Power Sources, 2012, 202, 236.