Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24070200-7    https://doi.org/10.11896/cldb.24070200
  无机非金属及其复合材料 |
锂离子电池负极极片干燥开裂机理与影响因素研究综述
姚洁丽1, 伍小波1,2,*, 刘紫鹏1, 唐繁荣1, 廖常平1
1 湖南工业大学材料与先进制造学院,湖南 株洲 412007
2 中南大学粉末冶金国家重点实验室,长沙 410083
A Review of Cracking Mechanisms and Impact Factors in Lithium-ion Battery Anode Electrode During Drying Process
YAO Jieli1, WU Xiaobo1,2,*, LIU Zipeng1, TANG Fanrong1, LIAO Changping1
1 School of Materials and Advanced Manufacturing, Hunan University of Technology, Zhuzhou 412007, Hunan, China
2 The Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 26232KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将石墨负极胶体分散体浆料涂覆在无孔刚性基底上并干燥时,干燥过程中产生的各种应力可能会使薄膜出现裂纹。这些裂纹会影响电池性能,加速电池损伤,缩短电池寿命。因此,掌握裂纹特性及其形成机制是防止极片开裂的关键。目前尽管已有众多关于胶体分散体薄膜干燥开裂的研究和模型,但对电池极片开裂行为的探讨却相对匮乏。本文系统地揭示了极片在干燥过程中的开裂机理及影响因素,深入剖析了极片微观结构变化与内应力发展的模型,并概述了极片干燥开裂的研究进展。研究表明,毛细管压力引发的应力是导致干燥开裂的主因,这一过程主要受极片材料特性和薄膜边界条件的影响。同时,本文还对抑制极片干燥开裂的技术挑战进行了展望,以期为解决极片开裂问题提供有价值的参考和启示。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
姚洁丽
伍小波
刘紫鹏
唐繁荣
廖常平
关键词:  锂离子电池  干燥开裂  开裂机理  涂层裂纹  抑制极片开裂    
Abstract: When the graphite anode colloidal dispersion slurry is coated onto a non-porous rigid substrate and dried, the stresses generated during the drying process may cause cracks in the film. These cracks can negatively impact battery performance, accelerate degradation, and shor-ten the battery’s lifespan. Therefore, understanding the crack characteristics and their formation mechanisms is crucial to preventing cracking of the electrode. While many studies and models have been conducted on the drying cracks of colloidal dispersion films, there is relatively little research on the cracking behavior of battery electrode pieces. This article systematically reveals the cracking mechanism and influencing factors during the drying process of electrode films, deeply analyzes the models of microstructural changes and internal stress development in electrode, and summarizes the progress in research on drying-induced cracking of electrode films. Studies have shown that the stress caused by capillary pressure is the main cause of drying-induced crack, which is mainly affected by the material properties of the electrode and the boundary conditions of the film. Additionally, this paper explores the technical challenges associated with inhibiting drying-induced cracking in the electrode, providing valuable insights for addressing the cracking issues in electrode manufacturing.
Key words:  lithium-ion battery    drying-induced cracking    cracking mechanism    coating cracks    suppressing electrode cracking
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TM912  
基金资助: 湖南省自然科学基金(2023JJ50187);国家重点研发计划(2020YFB1505901)
通讯作者:  *伍小波,湖南工业大学材料与先进制造学院讲师、硕士研究生导师;中南大学、天津大学校外硕士研究生导师。目前研究方向包括粉末冶金材料、锂电池负极材料、燃料电池电堆、炭/炭复合材料的制备与性能。wuxiaobo176@126.com   
作者简介:  姚洁丽,现为湖南工业大学材料与先进制造学院硕士研究生,在伍小波讲师的指导下进行研究。目前主要研究领域为新能源材料性能与微观结构。
引用本文:    
姚洁丽, 伍小波, 刘紫鹏, 唐繁荣, 廖常平. 锂离子电池负极极片干燥开裂机理与影响因素研究综述[J]. 材料导报, 2025, 39(9): 24070200-7.
YAO Jieli, WU Xiaobo, LIU Zipeng, TANG Fanrong, LIAO Changping. A Review of Cracking Mechanisms and Impact Factors in Lithium-ion Battery Anode Electrode During Drying Process. Materials Reports, 2025, 39(9): 24070200-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070200  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24070200
1 Wang B. Study on the mechanism and characteristics of dry cracking of the negative electrode sheet of lithium battery. Master’s Thesis, Yanshan University, China, 2023 (in Chinese).
王波. 锂电池负极极片干燥开裂机理及裂纹特性研究. 硕士学位论文, 燕山大学, 2023.
2 Lei H, Payne J, Mccormick A, et al. Journal of Applied Polymer Science, 2001, 81(4), 1000.
3 Spry A. Journal of the Geological Society of Australia, 1962, 8(2), 191.
4 Lin Y X, Liu Z, Leng K, et al. Journal of Power Sources, 2016, 309, 221.
5 Ren Z, Zhang X, Liu M, et al. Journal of Power Sources, 2019, 416, 104.
6 Thomas K E. Lithium-ion batteries: thermal and interfacial phenomena, University of California, Berkeley, 2002.
7 De Sa C, Benboudjema F, Thiery M, et al. Cement and Concrete Composites, 2008, 30(10), 947.
8 Luar P, Pease B, Mazzotta G B, et al. ACI Materials Journal, 2007, 104(2), 187.
9 Hallett P, Newson T. European Journal of Soil Science, 2005, 56(1), 31.
10 Kitsunezaki S. Physical Review E, 1999, 60(6), 6449.
11 Chiu R C, Garino T, Cima M. Journal of the American Ceramic Society, 1993, 76(9), 2257.
12 Routh A F. Reports on Progress in Physics, 2013, 76(4), 046603.
13 Sengupta R, Tirumkudulu M S. Soft Matter, 2016, 12(13), 3149.
14 Singh K B, Bhosale L R, Tirumkudulu M S. Langmuir, 2009, 25(8), 4284.
15 Tirumkudulu M S, Russel W B. Langmuir, 2005, 21(11), 4938.
16 Rollag K, Juarez-Robles D, Du Z, et al. ACS Applied Energy Materials, 2019, 2(6), 4464.
17 Routh A F, Russel W B. AIChE Journal, 1998, 44(9), 2088.
18 Routh A F, Russel W B. Langmuir, 1999, 15(22), 7762.
19 Tirumkudulu M S, Russel W B. Langmuir, 2004, 20(7), 2947.
20 Lee W P, Routh A F. Langmuir, 2004, 20(23), 9885.
21 Niu Z X, Yuan S j, Gao H, et al. Materials Reports, 2022, 36(21), 67(in Chinese).
牛朝霞, 袁帅洁, 高晗, 等. 材料导报, 2022, 36(21), 67.
22 Zarzycki J, Prassas M, Phalippou J. Journal of Materials Science, 1982, 17, 3371.
23 Marin A G, Gelderblom H, Lohse D, et al. Physical Review Letters, 2011, 107(8), 085502.
24 Depalo A, Santomaso A C. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 371.
25 Singh K B, Tirumkudulu M S. Physical Review Letters, 2007, 98(21), 218302.
26 Winter M, Besenhard J, Albering J, et al. Progress in Batteries & Battery Materials, 1998, 17, 208-13.
27 Zhang X, Shyy W, Sastry A M. Journal of the Electrochemical Society, 2007, 154(10), A910.
28 Winter M, Novák P, Monnier A. Journal of the Electrochemical Society, 1998, 145(2), 428.
29 Zaghib K, Nadeau G, Kinoshita K. Journal of the Electrochemical Society, 2000, 147(6), 2110.
30 Aifantis K E, Hackney S, Dempsey J. Journal of Power Sources, 2007, 165(2), 874.
31 Wang Y, Dang D, Li D, et al. Journal of Power Sources, 2019, 438(Oct. 31), 226938. 1.
32 Rahani E K, Shenoy V B. Journal of the Electrochemical Society, 2013, 160(8), A1153.
33 Jäckel N, Dargel V, Shpigel N, et al. Journal of Power Sources, 2017, 371, 162.
34 Choi S, Kwont-W, Coskun A, et al. Science, 2017, 357(6348), 279.
35 Xiao X, Liu P, Verbrugge M, et al. Journal of Power Sources, 2011, 196(3), 1409.
36 Du Z, Rollag K, Li J, et al. Journal of Power Sources, 2017, 354, 200.
37 Lazarus V, Pauchard L. Soft Matter, 2011, 7(6), 2552.
38 Li J, Dozier A K, Li Y, et al. Journal of The Electrochemical Society, 2011, 158(6), A689.
39 Sommer A P, Franker-P. Nano Letters, 2003, 3(5), 573.
40 Zhang Y J, Tuning of self-assembly patterns induced by the evaporation of colloidal droplets, Ph. D. Thesis, Northwestern Polytechnical University, China, 2015(in Chinese).
张永建. 胶体液滴的蒸发及其自组装图案调控机制研究. 博士学位论文, 西北工业大学, 2015.
41 Jing G, Ma J. The Journal of Physical Chemistry B, 2012, 116(21), 6225.
42 Lama H, Basavaraj M G, Satapathy D K. Soft Matter, 2017, 13(32), 5445.
43 Han W, Li B, Lin Z. ACS Nano, 2013, 7(7), 6079.
44 Ghosh U U, Chakraborty M, Bhandari A B, et al. Langmuir, 2015, 31(22), 6001.
45 Smith M, Sharp J. Langmuir, 2011, 27(13), 8009.
46 Zhu P, Gastol D, Marshall J, et al. Journal of Power Sources, 2020, 485, 229321.
47 Qiao J, Adams J R, Johannsmann D. Langmuir, 2012, 28(23), 8674.
48 Bacchin P, Brutin D, Davaille A, et al. The European Physical Journal E, 2018, 41, 1.
49 Kakui T, Miyauchi T, Kamiya H. Journal of the European Ceramic Society, 2005, 25(5), 655.
50 Carreras E S, Chabert F, Dunstan D, et al. Journal of Colloid and Interface Science, 2007, 313(1), 160.
51 Koga S, Inasawa S. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 95.
52 Keddie J, Routh A F. Fundamentals of latex film formation: processes and properties, Springer Science & Business Media, 2010.
53 Lee W P, Routh A F. Industrial & Engineering Chemistry Research, 2006, 45(21), 6996.
54 Vanpeene V, Villanova J, King A, et al. Advanced Energy Materials, 2019, 9(18), 1803947.
55 Hernandez C R, Etiemble A, Douillard T, et al. Advanced Energy Materials, 2018, 8(6), 1701787.
56 Wang Y, He Y, Xiao R, et al. Journal of Power Sources, 2012, 202, 236.
[1] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[2] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[3] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[4] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[5] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[6] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[7] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[8] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[9] 尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
[10] 高颖, 陈萌, 王长龙. 改性钢渣-沥青混合料的性能及机理[J]. 材料导报, 2024, 38(2): 22100041-7.
[11] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[12] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[13] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[14] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[15] 王娜, 费杰, 郑欣慧, 赵蓓, 杨甜. 碳布基自支撑锂/钠离子电池负极材料的研究进展[J]. 材料导报, 2023, 37(4): 20090256-9.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed