Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24040041-8    https://doi.org/10.11896/cldb.24040041
  金属与金属基复合材料 |
掺氢天然气管道氢致损伤及检测技术研究现状
刘志坦1,*, 吴溢凡2, 李玉刚1,3,4, 王纯2, 曹炼博1,4, 成先明2, 杨可2
1 国家能源集团科学技术研究院有限公司低碳智能燃煤发电与超净排放全国重点实验室,南京 210023
2 河海大学材料科学与工程学院,江苏 常州 213000
3 清华大学能源与动力工程系,北京 100084
4 国能南京电力试验研究有限公司,南京 210023
Research Status of Hydrogen Damage and Detection Technology in Hydrogen-doped Natural Gas Pipelines
LIU Zhitan1,*, WU Yifan2, LI Yugang1,3,4, WANG Chun2, CAO Lianbo1,4, CHENG Xianming2, YANG Ke2
1 State Key Laboratory of Low-carbon Intelligent Coal-fired Power Generation and Ultra-Net Emissions, China Energy Investment Group Co., Ltd., Nanjing 210023, China
2 College of Materials Science and Engineering, Hohai University, Changzhou 213000, Jiangsu, China
3 Departinont of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
4 Nanjing Electric Power Experimental Research Co., Ltd., China Energy Investment Group Co., Ltd., Nanjing 210023, China
下载:  全 文 ( PDF ) ( 9221KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在当前全球能源转型和碳减排目标的背景下,掺氢天然气输送技术的开发和应用受到了广泛关注。这种技术通过将氢气与天然气混合使用现有的天然气管道基础设施进行输送,不仅有助于提高能源效率,还能促进清洁能源的使用。然而,氢气的引入也给天然气输送系统带来了新的挑战,本文探讨了氢致损伤的主要机理,综述了影响掺氢天然气管道氢致损伤的因素。此外,对当前用于探测和评估掺氢天然气管道损伤的技术进行阐述,通过比较和分析这些检测技术的优势和局限,指出未来研究的方向,包括提高检测技术的灵敏度和准确性,以及开发新的检测方法以应对掺氢天然气输送过程中的特殊挑战。本文旨在为掺氢天然气输送系统的安全运行提供科学依据和技术支持,对于推动氢能及天然气的安全、高效输送具有重要意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘志坦
吴溢凡
李玉刚
王纯
曹炼博
成先明
杨可
关键词:  氢致损伤  天然气管道  缺陷检测    
Abstract: In the context of the ongoing global energy transition and carbon reduction objectives, there has been significant attention given to the deve-lopment and implementation of hydrogen-doped natural gas transmission technology. By blending hydrogen with natural gas for delivery through existing pipeline infrastructure, this technology not only enhances energy efficiency but also promotes the utilization of clean energy sources. However, the introduction of hydrogen also presents new challenges to the natural gas transmission system. This paper examines the primary mechanisms behind hydrogen-induced damage and summarizes the factors that influence such damage in pipelines carrying hydrogen-doped natural gas. Furthermore, it describes current technologies employed for detecting and evaluating damage in these pipelines. Through a comparative analysis of their advantages and limitations, future research directions are identified including enhancing sensitivity and accuracy of detection technologies as well as developing novel methods to address specific challenges encountered during transportation of hydrogen-doped natural gas. The objective of this paper is to provide a scientific foundation and technical support for ensuring safe operation of hydrogen-doped natural gas transmission systems, which holds great significance in promoting secure and efficient transportation of both hydrogen energy and na-tural gas.
Key words:  hydrogen-induced damage    natural gas pipeline    defect detection
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  TB304  
基金资助: 国家重点研发计划(2022YFB4003905);低碳智能燃煤发电与超净排放全国重点实验室开放课题(D2023FK100);常州市重点研发计划(社会发展科技支撑)项目(CE20235055)
通讯作者:  *刘志坦,华北电力大学博士研究生导师。目前主要研究方向为氢能技术、天然气发电及分布式能源产业政策研究、燃机进气系统关键集成技术及装备研究和应用、燃气电厂环保等。zhitanliu@163.com   
引用本文:    
刘志坦, 吴溢凡, 李玉刚, 王纯, 曹炼博, 成先明, 杨可. 掺氢天然气管道氢致损伤及检测技术研究现状[J]. 材料导报, 2025, 39(10): 24040041-8.
LIU Zhitan, WU Yifan, LI Yugang, WANG Chun, CAO Lianbo, CHENG Xianming, YANG Ke. Research Status of Hydrogen Damage and Detection Technology in Hydrogen-doped Natural Gas Pipelines. Materials Reports, 2025, 39(10): 24040041-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040041  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24040041
1 Liu X B, Zhang D, Wu X J, et al. Mechanics in Engineering, 2023, 45(2), 245 (in Chinese).
刘啸奔, 张东, 武学健, 等. 力学与实践, 2023, 45(2), 245.
2 Wang F, Yu M Y, Chen L Y. Electric Power Technology and Environmental Protection, 2024, 40(5), 445(in Chinese).
汪飞, 喻梦伊, 陈良勇. 电力科技与环保, 2024, 40(5), 445.
3 Zhao Z H, Li H J, Wu C H, et al. Electric Power Technology and Environmental Protection, 2024, 40(1), 18 (in Chinese).
赵争辉, 李航锦, 吴超杭, 等. 电力科技与环保, 2024, 40(1), 18.
4 Zhao Y, Chang Q, Hu J, et al. Electric Power Technology and Environmental Protection, 2022, 38(4), 286 (in Chinese).
赵月, 常青, 胡杰, 等. 电力科技与环保, 2022, 38(4), 286.
5 Sun H, Chen N, Sun Z M, et al. Welded Pipe and Tube, 2023, 46(10), 63 (in Chinese).
孙宏, 陈楠, 孙志敏, 等. 焊管, 2023, 46(10), 63.
6 Liu Y, Zhang L Z, Gao W X. Oil & Gas Storage and Transportation, 2022, 41(12), 1355 (in Chinese).
刘宇, 张立忠, 高维新. 油气储运, 2022, 41(12), 1355.
7 Yao C, Chen J, Ming H L, et al. Journal of Chinese Society for Corrosion and Protection, 2023, 43(2), 209 (in Chinese).
姚婵, 陈健, 明洪亮, 等. 中国腐蚀与防护学报, 2023, 43(2), 209.
8 Li S, Hu R, Zhao W, et al. Surface Technology, 2020, 49(8), 15.
9 Cao J. Engineering Failure Analysis, 2024, 156, 107787.
10 Achem C D. Metallurgical Transactions, 1972, 3(2), 441.
11 Wang D, Ma F, Chen H. Materials, 2023, 16(4), 1708.
12 Nagumo M. Materials Science and Technology, 2004, 20(8), 940.
13 Lynch S. Stress Corrosion Cracking, 2011, 30(3-4), 90
14 Birnbaum H K. Materials Science and Engineering:A, 1994, 176(1), 191.
15 Lynch S P. Journal of Materials Science, 1986, 21(2), 692.
16 Cheng X, Qian W F, Li X L, et al. Light Alloy Fabrication Technology, 2023, 51(8), 46 (in Chinese).
程笑, 钱维锋, 李秀磊, 等. 轻合金加工技术, 2023, 51(8), 46.
17 Shinko T. Experimental characterization of influence of gaseous hydrogen on fatigue crack propagation and crack tip plasticity in Armco pure iron. Ph. D. Thesis. Poitiers University, France, 2019.
18 Yuan S, Zhu Y, Huang M, et al. Mechanics of Materials, 2023, 186, 104781.
19 Feng H, Chi Q, Ji L K, et al. Corrosion Science and Protection Technology, 2017, 29(3), 318 (in Chinese).
封辉, 池强, 吉玲康, 等. 腐蚀科学与防护技术, 2017, 29(3), 318.
20 McCarroll I E, Lin Y, Rosenthal A, et al. Scripta Materialia, 2022, 221, 116.
21 Si Y, Tang Y S, Zhou X, et al. Automobile Technology & Material, 2022(6), 16 (in Chinese).
司宇, 唐远寿, 周新, 等. 汽车工艺与材料, 2022(6), 16.
22 Von Z F, Haluska M, Hirscher M. Thermochimica Acta, 2003, 404(1-2), 251.
23 Haq A J, Muzaka K, Dunne D P, et al. International Journal of Hydrogen Energy, 2013, 38(5), 2544.
24 Zhou C L, Liu X H, Zhang Y J, et al. Natural Gas Industry, 2022, 42(9), 135 (in Chinese).
周池楼, 刘先晖, 张永君, 等. 天然气工业, 2022, 42(9), 135.
25 Qiu W J, Li G M, Xiong H Y, et al. Mechanics in Engineering, 2022, 44(4), 776 (in Chinese).
仇文杰, 李国敏, 熊海燕, 等. 力学与实践, 2022, 44(4), 776.
26 Vergani L, Colombo C, Gobbi G, et al. Procedia Engineering, 2014, 74, 468.
27 Tu Y, Liu S, Shi R, et al. Anti-Corrosion Methods and Materials, 2023, 70(4), 141.
28 Sanchez J, Lee S F, Martin-Rengel M A, et al. Engineering Failure Analysis, 2016, 59, 467.
29 Peng X Y, Cheng Y F. Canadian Metallurgical Quarterly, 2014, 53(1), 107.
30 Depover T, Verbeken K. In:Advances in hydrogen embrittlement study, Vladimir A P, Alexander K B. Springer, Germany, 2021, pp.59.
31 Depover T, Laureys A, Pérez E D, et al. Materials, 2018, 11(5), 698.
32 Yuan J Q, Wang L P. Heat Treatment of Metals, 2015, 40(12), 56 (in Chinese).
原佳强, 王莉萍. 金属热处理, 2015, 40(12), 56.
33 Chan S L I. Journal of the Chinese Institute of Engineers, 1999, 22(1), 43.
34 Anijdan S H M, Sabzi M, Park N, et al. Industrial Electronics International Journal of Pressure Vessels and Piping, 2022, 199, 104759.
35 Depover T, Wallaert E, Verbeken K. Materials Science and Engineering:A, 2016, 664, 195.
36 Yuan W, Huang F, Liu J, et al. Chinese Journal of Applied Chemistry, 2012, 29(9), 1065 (in Chinese).
袁玮, 黄峰, 刘静, 等. 应用化学, 2012, 29(9), 1065.
37 Saleh A A, Hejazi D, Gazder A A, et al. International Journal of Hydrogen Energy, 2016, 41(28), 12424.
38 Qu Y M, Huang F, Liu J, et al. Chinese Journal of Materials Research, 2010, 24(5), 508 (in Chinese).
曲炎淼, 黄峰, 刘静, 等. 材料研究学报, 2010, 24(5), 508.
39 Yuan W, Huang F, Gan L J, et al. Journal of Chinese Society for Corrosion and Protection, 2019, 39(6), 536 (in Chinese).
袁玮, 黄峰, 甘丽君, 等. 中国腐蚀与防护学报, 2019, 39(6), 536.
40 Cauwels M, Depraetere R, De Waele W, et al. Journal of Natural Gas Science and Engineering, 2022, 101, 104533.
41 Koyama M, Rohwerder M, Tasan C C, et al. Materials Science and Technology, 2017, 33(13), 1481.
42 Yang H, Nguyen T T, Park J, et al. Metals and Materials International, 2023, 29(2), 303.
43 Zhou C S, Chen X Y, Wang Z, et al. Corrosion Science, 2014, 89, 30.
44 Del-Pozo A, Villalobos J C, Serna S, et al. Current trends and future developments, Netherlands, 2020, pp.139.
45 Xu X S, Zhang R, Wang C L, et al. Engineering Failure Analysis, 2024, 155, 107746.
46 Li J Q, Wu Z Y, Zhu L J, et al. Corrosion Science, 2023, 223, 11460.
47 Li J Q, Wu Z Y, Zhu L J, et al. Research and Exploration in Laboratory, 2023, 42(10), 10 (in Chinese).
李加庆, 吴子悦, 朱礼洁, 等. 实验室研究与探索, 2023, 42(10), 10.
48 Xing X, Cheng R, Gui O, et al. Materials Science and Engineering:A, 2021, 800, 140118.
49 Wang C L, Zhang J X, Liu C W, et al. International Journal of Hydrogen Energy, 2023, 48(1), 243.
50 Wan H, Wu X, Ming H, et al. Acta Metallurgica Sinica (English Letters), 2023, 37(2), 3.
51 Meng B, Gu C H, Zhang L, et al. International Journal of Hydrogen Energy, 2017, 42(11), 7404.
52 Shang J, Wang J Z, Chen W F, et al. Materials Letters, 2021, 296, 129924.
53 Zhang S, Li J, An T, et al. International Journal of Hydrogen Energy, 2021, 46(39), 20621.
54 Zhou C S, He Y M, Jiang J H, et al. Corrosion Science, 2022, 207, 110594.
55 Liu C W, Yang H C, Wang C L, et al. International Journal of Hydrogen Energy, 2023, 48(71), 27766.
56 Hu M Y, Zhao X J, Liu Z, et al. Electric Power Technology and Environmental Protection, 2007(3), 14 (in Chinese).
胡满银, 赵雪姣, 刘忠, 等. 电力环境保护, 2007(3), 14.
57 Huang X G, Zhou L, Li Y K, et al. Engineering Failure Analysis, 2023, 146, 107079.
58 Staykov A, Komoda R, Kubota M, et al. The Journal of Physical Chemistry C, 2019, 123(50), 30265.
59 Liu G, Cui Z Y, Wei J Q, et al. Oil & Gas Storage and Transportation, 2023, 42(1), 16 (in Chinese).
刘刚, 崔振莹, 魏甲强, 等. 油气储运, 2023, 42 (1), 16.
60 Ren X C, Zhu W Y, Li J X, et al. Chinese Journal of Engineering, 2007(2), 232 (in Chinese).
任学冲, 褚武扬, 李金许, 等. 北京科技大学学报, 2007(2), 232.
61 Niu H, Li B, Liu B, et al. Welded Pipe and Tube, 2023, 46(10), 1 (in Chinese).
牛辉, 李拔, 刘斌, 等. 焊管, 2023, 46(10), 1.
62 Niu H. Electric Age, 2023(S1), 64 (in Chinese).
牛辉. 电气时代, 2023(S1), 64.
63 Zang X L, Xu Z D, Lu H F, et al. Industrial Electronics International Journal of Pressure Vessels and Piping, 2023, 206, 105033.
64 Khoroshikh A V, Surkov Y P, Rybalko V G, et al. Russian Journal of Nondestructive Testing, 1997, 33(12), 821.
65 Zhang L, Du Y, Cao A. In:2015 IEEE International Conference on Information and Automation. Yunan, China, 2015, pp.843.
66 Liang H B, Wang Y, Jia W S. Journal of Safety and Environment, 2023, 23(10), 3528 (in Chinese).
梁海波, 王怡, 贾武升. 安全与环境学报, 2023, 23(10), 3528.
67 Sun J, Sun J, Zhang W W, et al. Petro & Chemical Equipment, 2023, 26(2), 30 (in Chinese).
孙静, 孙谨, 章卫文, 等. 石油和化工设备, 2023, 26(2), 30.
68 Du P, Zhang J T. Coal Technology, 2011, 30(2), 8 (in Chinese).
杜鹏, 张吉堂. 煤炭技术, 2011, 30(2), 8.
69 Ye Z L, Han Z D. Instrument Technique and Sensor, 2020(8), 100 (in Chinese).
叶至灵, 韩赞东. 仪表技术与传感器, 2020(8), 100.
70 Jaeha P, Daekwang K, Hakjoon K, et al. Journal of Mechanical Science and Technology, 2017, 31(11), 5209.
71 Zhang X, Cheng J, Qiu G Z, et al. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 913.
72 Shi Y, Zhang C, Li R, et al. Sensors, 2015, 15(12), 31036.
73 Feng Y, Yang Y, Huang B. International Journal of Advanced Robotic Systems, 2019, 16(5), 51.
74 Geng L Y, Dong S H, Qian W C, et al. Oil & Gas Storage and Transportation, 2023, 42(5), 532 (in Chinese).
耿丽媛, 董绍华, 钱伟超, 等. 油气储运, 2023, 42(5), 532.
75 Xiong Y, Liu S, Hou L, et al. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2024, 382(2264), 0387.
76 Lu Y N, Ren J P, Huang B, et al. Petrochemical Design, 2023, 40(2), 53 (in Chinese).
芦娅妮, 任金平, 黄波, 等. 石油化工设计, 2023, 40(2), 53.
77 Feng J, Xiao Q, Lu S X, et al. IEEE Transactions on Industrial Electronics, 2024, 71(1), 1049.
78 Song Y B, Kong W B, Chen X, et al. Software Guide, 2024, 23(3), 203 (in Chinese).
宋育斌, 孔维宾, 陈希, 等. 软件导刊, 2024, 23(3), 203.
79 Park J H, Yoo H R, Kim D K, et al. In:Advanced Engineering Theory and Applications 2015:Recent Advances in Electrical Engineering and Related Sciences. Cham, 2016, pp.697.
80 Zhu Q, Han Y, Xu J Y, et al. Electric Power Survey & Design, 2023(12), 17 (in Chinese).
朱琪, 韩扬, 徐境阳, 等. 电力勘测设计, 2023(12), 17.
81 Mardaninejad R, Safizadeh M S. Russian Journal of Nondestructive Testing, 2019, 55(11), 858.
82 Taheri H, Jones C, Taheri M. Journal of Natural Gas Science and Engineering, 2022, 102, 104568.
83 Feng Y, Zhang L, Zheng W. NDT & E International, 2018, 98, 123.
84 Li J Y, Zhang L B, Zheng W P. Journal of Taiyuan University of Technology, DOI:10.16355/j.tyut.1007-9432.20230748 (in Chinese).
李建宇, 张来斌, 郑文培. 太原理工大学学报, DOI:10.16355/j.tyut.1007-9432.20230748.
85 Chen T, He Q, Lv C, et al. Chinese Journal of Sensors and Actuators, 2023, 36(6), 860 (in Chinese).
陈涛, 何倩, 吕程, 等. 传感技术学报, 2023, 36(6), 860.
86 Guo W, Gao B, Tian G Y, et al. In:2019 Far East NDT New Technology & Application Forum. Qingdao, 2019, pp.138.
87 Cheng J G, Xu L, Chao L. Insight-Non-Destructive Testing and Condition Monitoring, 2021, 63(6), 326.
88 Li R. Oil & Gas Storage and Transportation, 2024, 43(3), 241 (in Chinese).
李睿. 油气储运, 2024, 43(3), 241.
89 Lai Z T, Chen P P. Chemical Engineering Management, 2019(17), 143 (in Chinese).
赖中腾, 陈盼盼. 化工管理, 2019(17), 143.
90 Liu H Y. Applied Energy Technology, 2022(7), 11 (in Chinese).
刘红妤. 应用能源技术, 2022(7), 11.
91 Wang S P, Wang Z G, Liu J H, et al. Control Engineering of China, 2014, 21(4), 572 (in Chinese).
王少平, 王增国, 刘金海, 等. 控制工程, 2014, 21(4), 572.
[1] 李丛, 赵雷, 徐连勇, 韩永典, 郝康达. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J]. 材料导报, 2025, 39(9): 24040126-10.
[2] 王慧鹏, 蔡冬威, 董丽虹, 林恩, 王海斗. 材料亚表面/表面缺陷锁相红外热成像检测研究现状与趋势[J]. 材料导报, 2024, 38(18): 23020112-8.
[3] 赵茜, 邢云颖, 王修云, 杨芝乐, 张雷. 天然气管道掺氢输送相容性研究现状[J]. 材料导报, 2024, 38(12): 22110125-7.
[4] 杨传礼, 张修庆. 基于机器视觉和深度学习的材料缺陷检测应用综述[J]. 材料导报, 2022, 36(16): 20070136-9.
[5] 李范, 张杨, 朱利民. 复合材料钻孔缺陷超声检测技术研究进展[J]. 材料导报, 2020, 34(Z2): 528-533.
[6] 高治峰, 董丽虹, 王海斗, 吕振林, 郭伟, 王博正. 振动红外热成像技术用于不同类型缺陷检测的研究进展[J]. 材料导报, 2020, 34(9): 9158-9163.
[7] 王博正, 董丽虹, 王海斗, 康嘉杰, 郭伟, 向明. 激光红外热成像技术在材料缺陷检测中的研究和应用现状[J]. 材料导报, 2020, 34(5): 5127-5132.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed