Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24040126-10    https://doi.org/10.11896/cldb.24040126
  金属与金属基复合材料 |
掺氢/纯氢环境下燃气轮机的氢致损伤研究进展
李丛1,2, 赵雷1,2,*, 徐连勇1,2, 韩永典1,2, 郝康达1,2
1 天津大学材料科学与工程学院,天津 300350
2 天津市现代连接技术重点实验室,天津 300350
Research Advances in Hydrogen Induced Damage of Gas Turbines in Hydrogen-containing/Pure-hydrogen Circumstances
LI Cong1,2, ZHAO Lei1,2,*, XU Lianyong1,2, HAN Yongdian1,2, HAO Kangda1,2
1 School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
2 Tianjin Key Laboratory of Modern Connection Technology, Tianjin 300350, China
下载:  全 文 ( PDF ) ( 31468KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着全球能源结构向低碳化转变,氢能作为一种清洁、可再生的能源,正受到越来越多的关注。掺氢/纯氢燃气轮机作为一种高效能源转换技术,为氢能的大规模应用提供了重要支撑。然而,氢气环境下的燃气轮机热端部件面临着氢致损伤的挑战,限制了其长期稳定运行。本文在国内外大量研究成果的基础上,阐述了目前主要的氢损伤机制以及相关影响因素,归纳了氢与镍基高温合金材料微观缺陷(空位、位错、晶界等)相互作用的机理以及临氢环境下氢气对镍基高温合金力学性能的影响。研究表明,氢会导致镍基高温合金的延性下降,但对屈服强度和抗拉强度的影响相对较小。同时,氢对裂纹扩展行为也具有重要的影响,尤其在动态循环加载的条件下,氢加速了疲劳裂纹的扩展。然而,在高温高压条件下,氢致损伤机理的研究以及材料性能的测试仍存在诸多挑战,亟待进一步深入研究和开发专用设备。因此,未来的工作应致力于探索多种机制的协同作用,建立适应高温高压环境下材料性能测试的新标准,以更准确地评估镍基高温合金在掺氢/纯氢燃气轮机等实际工程中的应用前景和安全性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李丛
赵雷
徐连勇
韩永典
郝康达
关键词:  燃气轮机  氢能  镍基高温合金  氢致损伤    
Abstract: Amidst the global shift towards low-carbon energy structures, hydrogen energy has emerged as a prominent clean and renewable energy source, garnering increased attention. The utilization of hydrogen-doped or pure hydrogen gas turbines represents a crucial advancement in energy conversion technology, facilitating the widespread adoption of hydrogen energy on a large scale. However, the utilization of gas turbines in hydrogen-rich environments presents significant challenges due to the potential for hydrogen-induced damage, thereby constraining their long-term operational stability. Drawing upon extensive research findings from both domestic and international sources, this paper delineates the principal mechanisms underlying hydrogen-induced damage and elucidates the pertinent influencing factors. Furthermore, it synthesizes the intricate interactions occurring at the microscopic level between hydrogen and nickel-based superalloys, encompassing phenomena such as vacancies, dislocations, and grain boundaries. Research has evidenced that the presence of hydrogen canreduce in the ductility of nickel-based superalloys, although its impact on yield strength and tensile strength appears relatively marginal. Concurrently, hydrogen exerts a notable influence on crack propagation behavior, particularly under conditions of dynamic cyclic loading, whereby it expedites fatigue crack growth rates. Nevertheless, investigating the mechanisms of hydrogen-induced damage and material properties under elevated temperature and pressure poses significant challenges, necessitating further research and advancements in experimental apparatus. Hence, future endeavors should prioritize elucidating the synergistic interplay of multiple mechanisms to establish a novel standard for assessing material performance in high-temperature, high-pressure environments. Such efforts aim to more precisely evaluate the potential applications and safety characteristics of nickel-based superalloys in practical endeavors, such as hydrogen-doped/pure hydrogen gas turbine systems.
Key words:  gas turbine    hydrogen energy    nickel-base superalloy    hydrogen damage
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TG174  
基金资助: 国家自然科学基金(52375371)
通讯作者:  *赵雷,天津大学材料科学与工程学院教授、博士研究生导师。目前主要从事先进材料的高性能焊接;面向火电、核电、航空、航天、深海等领域重大装备,解决蠕变、疲劳、腐蚀、氧化、临氢等环境下焊接结构的性能评价、损伤评估与寿命预测;以及先进材料的增材制造以及使役性能评价。zhaolei85@tju.edu.cn   
作者简介:  李丛,2020年6月、2023年6月分别于南昌大学和天津大学获得工学学士学位和工学硕士学位。目前主要研究领域为高温以及临氢环境下材料的损伤行为及相关部件的安全完整性评估。
引用本文:    
李丛, 赵雷, 徐连勇, 韩永典, 郝康达. 掺氢/纯氢环境下燃气轮机的氢致损伤研究进展[J]. 材料导报, 2025, 39(9): 24040126-10.
LI Cong, ZHAO Lei, XU Lianyong, HAN Yongdian, HAO Kangda. Research Advances in Hydrogen Induced Damage of Gas Turbines in Hydrogen-containing/Pure-hydrogen Circumstances. Materials Reports, 2025, 39(9): 24040126-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24040126  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24040126
1 Wang L, Jiao S, Xie Y, et al. Energy, 2022, 239, 122194.
2 Chen Y, Zhao Y M, Cao J L, et al. Energy Engineering, 2022, 42(3), 88. (in Chinese).
陈宇, 赵彦旻, 曹吉领, 等. 能源工程, 2022, 42(3), 88.
3 Sun F. Contemporary Petroleum and Petrochemicals, 2023, 31(2), 40. (in Chinese).
孙菲. 当代石油石化, 2023, 31(2), 40.
4 Egeland-Eriksen T, Hajizadeh A, Sartori S. International Journal of Hydrogen Energy, 2021, 46(63), 31963.
5 Wei H Q, Wang N, Li W, et al. Journal of Tianjin University (Natural Science and Engineering Technology), 2022, 55(12), 1230(in Chinese).
卫海桥, 王楠, 李卫, 等. 天津大学学报(自然科学与工程技术版), 2022, 55(12), 1230.
6 Jiang Y H, Li Y G, Zheng K D, et al. Internal Combustion Engine and Accessories, 2023(20), 102(in Chinese).
姜悦辉, 李玉刚, 郑康东, 等. 内燃机与配件, 2023(20), 102.
7 berg S, Odenberger M, Johnsson F. International Journal of Hydrogen Energy, 2022, 47(1), 624.
8 Stefan E, Talic B, Larring Y, et al. International Materials Reviews, 2022, 67(5), 461.
9 Li X G. Shanghai Metal, 2023, 45(5), 1(in Chinese).
李星国. 上海金属, 2023, 45(5), 1.
10 Dadfarnia M, Nagao A, Wang S, et al. International Journal of Fracture, 2015, 196(1), 223.
11 Poorhaydari K. Engineering Failure Analysis, 2019, 105, 321.
12 Martin M L, Dadfarnia M, Orwig S, et al. Acta Materialia, 2017, 140, 300.
13 Liao Z Y, Zhang J H, Zhao J Q, et al. Journal of Iron and Steel Research, 2023, 35(9), 1053(in Chinese).
廖振洋, 张继舜, 赵吉庆, 等. 钢铁研究学报, 2023, 35(9), 1053.
14 Shu G G, Chen J, Zhang X Y, et al. Journal of Power Engineering, 2022, 42(12), 1213 (in Chinese).
束国刚, 陈坚, 张晓毅, 等. 动力工程学报, 2022, 42(12), 1213.
15 He L. Thermal Turbine, 2022, 51(3), 202(in Chinese).
何磊. 热力透平, 2022, 51(3), 202.
16 Sun D, Ma G, Wan Z, et al. Engineering Failure Analysis, 2023, 154, 107715.
17 Johnson W H, Thomson W. II. Proceedings of the Royal Society of London, 1997, 23(156-163), 168.
18 Li X, Ma X, Zhang J, et al. Acta Metallurgica Sinica (English Letters), 2020, 33(6), 759.
19 Sun B, Wang D, Lu X, et al. Acta Metallurgica Sinica (English Letters), 2021, 34(6), 741.
20 Zapffe C A, Sims C E. Transactions of the Metallurgical Society of AIME, 1941, 145, 225.
21 Fischer F D, Svoboda J. International Journal of Plasticity, 2014, 63, 110.
22 Xie D G, Wang Z J, Sun J, et al. Nature Materials, 2015, 14(9), 899.
23 Borruto A, Borruto T M R, Spada A. International Journal of Hydrogen Energy, 1999, 24(7), 651.
24 Westlake D G. Transactions of the American Mathematical Society, 1969, 62.
25 Kim Y S, Bak S H, Kim S S. Metallurgical and Materials Transactions A, 2016, 47(1), 222.
26 Pfeil L B, Carpenter H C H. Proceedings of the Royal Society of London, 1997, 112(760), 182.
27 Beachem C D. Metallurgical Transactions, 1972, 3(2), 441.
28 You Y, Teng Q, Zhang Z, et al. Materials Science and Engineering: A, 2016, 655, 277.
29 Lynch S P. Metallography, 1989, 23(2), 147.
30 Nagumo M. Materials Science and Technology, 2004, 20(8), 940.
31 Neeraj T, Srinivasan R, Li J. Acta Materialia, 2012, 60(13), 5160.
32 Yao J, Tan Q, Venezuela J, et al. Current Opinion in Solid State and Materials Science, 2023, 27(5), 101106.
33 Novak P, Yuan R, Somerday B P, et al. Journal of the Mechanics and Physics of Solids, 2010, 58(2), 206.
34 Martin M L, Robertson I M, Sofronis P. Acta Materialia, 2011, 59(9), 3680.
35 Wasim M, Djukic M B, Ngo T D. Engineering Failure Analysis, 2021, 123, 105312.
36 Djukic M B, Sijacki Zeravcic V, Bakic G M, et al. Engineering Failure Analysis, 2015, 58, 485.
37 Djukic M B, Bakic G M, Sijacki Zeravcic V, et al. Engineering Fracture Mechanics, 2019, 216, 106528.
38 Arora A, Singh H, Mahajan D K. Materials Science and Engineering: A, 2020, 787, 139488.
39 Ding Y, Yu H, Lin M, et al. Acta Materialia, 2022, 239, 118279.
40 Ogawa Y, Birenis D, Matsunaga H, et al. Materials Science and Engineering: A, 2018, 733, 316.
41 Huang S, Chen Z, Li Y, et al. Journal of Materials Engineering and Performance, 2019, 28(1), 567.
42 Li L, Wang Y, Liu J, et al. Journal of Materials Processing Technology, 2023, 316, 117958.
43 Zhang D, Shen J, Xu Y, et al. International Journal of Hydrogen Energy, 2024, 50, 1147.
44 Koyama M, Rohwerder M, Tasan C C, et al. Materials Science and Technology, 2017, 33(13), 1481.
45 Xie D, Li S, Li M, et al. Nature Communications, 2016, 7(1), 13341.
46 Nagumo M, Nakamura M, Takai K. Metallurgical and Materials Transactions A, 2001, 32(2), 339.
47 Li Y, Wang Q, Zhang H, et al. International Journal of Hydrogen Energy, 2023, 48(11), 4516.
48 Tateyama Y, Ohno T. Physical Review B, 2003, 67(17), 174105.
49 Lu G, Kaxiras E. Physical Review Letters, 2005, 94(15), 155501.
50 Li S, Li Y, Lo Y C, et al. International Journal of Plasticity, 2015, 74, 175.
51 Wang J, Shao B, Shan D, et al. Materials Today Communications, 2023, 36, 106390.
52 Counts W A, Wolverton C, Gibala R. Acta Materialia, 2010, 58(14), 4730.
53 Tsuru T, Yamaguchi M, Ebihara K, et al. Computational Materials Science, 2018, 148, 301.
54 Yoo J, Jo M C, Jo M C, et al. Acta Materialia, 2021, 207, 116661.
55 Sawada H, Omura T. Computational Materials Science, 2021, 198, 110652.
56 Cottrell A H, Bilby B A. Proceedings of the Physical Society Section A, 1949, 62(1), 49.
57 Robertson I M. Engineering Fracture Mechanics, 2001, 68(6), 671.
58 Robertson I M, Sofronis P, Nagao A, et al. Metallurgical and Materials Transactions B, 2015, 46(3), 1085.
59 Lindgren L E, Domkin K, Hansson S. Mechanics of Materials, 2008, 40(11), 907.
60 Teus S M, Shivanyuk V N, Shanina B D, et al. Physica Status Solidi (a), 2007, 204(12), 4249.
61 Gavriljuk V G, Shanina B D, Shyvanyuk V N, et al. Journal of Applied Physics, 2010, 108(8), 083723.
62 Zhu Y, Li Z, Huang M, et al. International Journal of Plasticity, 2017, 92, 31.
63 Liang S, Zhu Y, Huang M, et al. Modelling and Simulation in Materials Science and Engineering, 2021, 29(6), 065003.
64 Wilcox B A, Smith G C. Acta Metallurgica, 1964, 12(4), 371.
65 McInteer W A, Thompson A W, Bernstein I M. Acta Metallurgica, 1980, 28(7), 887.
66 Robertson I M, Birnbaum H K. Scripta Metallurgica, 1984, 18(3), 269.
67 Wang S, Nagao A, Edalati K, et al. Acta Materialia, 2017, 135, 96.
68 Harris Z D, Lawrence S K, Medlin D L, et al. Acta Materialia, 2018, 158, 180.
69 Wang S, Nagao A, Sofronis P, et al. Acta Materialia, 2018, 144, 164.
70 Ogawa Y, Birenis D, Matsunaga H, et al. Scripta Materialia, 2017, 140, 13.
71 Birenis D, Ogawa Y, Matsunaga H, et al. Acta Materialia, 2018, 156, 245.
72 Sun Q, He J, Nagao A, et al. Acta Materialia, 2023, 246, 118660.
73 Bechtle S, Kumar M, Somerday B P, et al. Acta Materialia, 2009, 57(14), 4148.
74 Yamaguchi M, Ebihara K I, Itakura M, et al. Metallurgical and Materials Transactions A, 2011, 42(2), 330.
75 Mai H L, Cui X Y, Scheiber D, et al. Materials & Design, 2021, 212, 110283.
76 Huang C, Song K, Zhou S, et al. Materials Today Communications, 2023, 37, 107222.
77 Jothi S, Croft T N, Brown S G R. International Journal of Hydrogen Energy, 2014, 39(35), 2067.
78 Depover T, Verbeken K. International Journal of Hydrogen Energy, 2018, 43(5), 3050.
79 Di Stefano D, Nazarov R, Hickel T, et al. Physical Review B, 2016, 93(18), 184108.
80 Takahashi J, Kawakami K, Kobayashi Y, et al. Scripta Materialia, 2010, 63(3), 261.
81 Wei F G, Tsuzaki K. Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, Woodhead Publishing, USA, 2012, pp. 493.
82 Wallaert E, Depover T, Arafin M, et al. Metallurgical and Materials Transactions A, 2014, 45(5), 2412.
83 Li X, Zhang J, Fu Q, et al. International Journal of Hydrogen Energy, 2018, 43(43), 20118.
84 Rezende M C, Araujo L S, Gabriel S B, et al. International Journal of Hydrogen Energy, 2015, 40(47), 17075.
85 Stenerud G, Wenner S, Olsen J S, et al. International Journal of Hydrogen Energy, 2018, 43(13), 6765.
86 Wu Y X, Li X Y, Wang Y M. Acta Materialia, 2007, 55(14), 4845.
87 Xue H T, Li J Z, Tang F L, et al. Computational Materials Science, 2021, 194, 110449.
88 Zhang Z, Zhang C H, Chen B. International Journal of Hydrogen Energy, 2024, 50, 342.
89 Qin L, Zhao M, Li Z, et al. Corrosion Science, 2023, 218, 111189.
90 Gao Y G, Zhao Y H, Wang X M, et al. Casting Engineering, 2023, 47(4), 27(in Chinese).
高亚龙, 赵义瀚, 王晓明, 等. 铸造工程, 2023, 47(4), 27.
91 Campari A, Ustolin F, Alvaro A, et al. International Journal of Hydrogen Energy, 2023, 48(90), 35316.
92 Lu X, Ma Y, Wang D. Materials Science and Engineering: A, 2020, 792, 139785.
93 Kirchheim R. Acta Materialia, 2007, 55(15), 5129.
94 Lee J, Lee T, Kwon Y J. Corrosion Reviews, 2015, 33(6), 433.
95 Ogawa Y, Hosoi H, Tsuzaki K, et al. Acta Materialia, 2020, 199, 181.
96 Fukuyama S, Yokogawa K. Superalloys, 1994, 718, 807.
97 Wei W. Superalloys, 1997, 36(4), 705.
98 Zhang Z, Moore K L, McMahon G, et al. Corrosion Science, 2019, 146, 58.
99 Galliano F, Andrieu E, Cloué J M, et al. International Journal of Hydrogen Energy, 2017, 42(33), 21371.
100 Ogawa Y, Takakuwa O, Okazaki S, et al. Corrosion Science, 2019, 161, 108186.
101 Ogawa Y, Noguchi K, Takakuwa O. Acta Materialia, 2022, 229, 117789.
102 Moody N R, Stoltz R E, Perra M W. Metallurgical Transactions A, 1987, 18(8), 1469.
103 Sampath D, Akid R, Morana R. Engineering Fracture Mechanics, 2018, 191, 324.
104 Ogawa Y, Takakuwa O, Okazaki S, et al. Corrosion Science, 2020, 174, 108814.
105 Jebaraj J J M, Morrison D J, Suni I I. Corrosion Science, 2014, 80, 517.
106 Tsay L W, Lin H H, Shiue R K. Corrosion Science, 2004, 46(11), 2651.
107 Sun Z, Moriconi C, Benoit G, et al. Metallurgical and Materials Tran-sactions A, 2013, 44(3), 1320.
108 Shinko T, Hénaff G, Halm D, et al. International Journal of Fatigue, 2019, 121, 197.
109 Alvaro A, Wan D, Olden V, et al. Engineering Fracture Mechanics, 2019, 219, 106641.
110 Matsunaga H, Takakuwa O, Yamabe J, et al. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2098), 20160412.
111 Wan D, Deng Y, Meling J I H, et al. Acta Materialia, 2019, 170, 87.
112 Fu Z, Wu P, Zhang Y, et al. International Journal of Fatigue, 2022, 160, 106848.
113 Fu Z, Wu P, Yang Q, et al. Corrosion Science, 2024, 227, 111745.
114 Takakuwa O, Ogawa Y, Miyata R. Scientific Reports, 2023, 13(1), 6804.
[1] 陈泰黎, 牛凡, 徐良辉, 陈新悦, 侯枭伟, 孙奖, 司艳, 方修洋, 蔡振兵. GH4169镍基高温合金的飞秒激光制孔性能研究[J]. 材料导报, 2025, 39(9): 24020029-7.
[2] 潘元帅, 王刚, 冯海霞, 柳军, 袁波, 田朋丹, 韩艺辉. 镍基高温合金与耐火材料界面特性研究[J]. 材料导报, 2025, 39(3): 22100206-7.
[3] 王帆, 赵宇辰, 郑文跃. 氨分解制氢钌基催化剂的研究进展[J]. 材料导报, 2024, 38(19): 23050178-13.
[4] 高磊, 屈星海, 吴一栋, 陈晶阳, 肖程波, 惠希东. K439B镍基铸造高温合金800 ℃长期时效过程中碳化物的演变规律[J]. 材料导报, 2024, 38(15): 23110091-5.
[5] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[6] 蒋瑞鑫, 牛宗伟, 史程程, 任智强, 韩国峰, 杨保伟, 王文宇, 杨善林, 陈贺连. 镍基高温合金载能束增材修复技术研究现状[J]. 材料导报, 2023, 37(15): 21120141-1.
[7] 王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
[8] 李翠芹, 裴玉冰, 范华, 郭维华, 王天剑, 吴比, 巩秀芳. 火电机组高中压转子选材的研究进展[J]. 材料导报, 2022, 36(Z1): 22010097-7.
[9] 袁战伟, 常逢春, 马瑞, 白洁, 郑俊超. 增材制造镍基高温合金研究进展[J]. 材料导报, 2022, 36(3): 20090201-9.
[10] 高助威, 李小高, 刘钟馨, 饶健民. 氢燃料电池汽车的研究现状及发展趋势[J]. 材料导报, 2022, 36(14): 21060046-8.
[11] 谢兴飞, 曲敬龙, 杜金辉. GH4720Li镍基合金混晶组织对高温持久性能的影响[J]. 材料导报, 2020, 34(Z1): 375-379.
[12] 金峰, 熊江涛, 石俊秒, 郭德伦, 李京龙. GH4169旋转摩擦焊飞边成形机理研究[J]. 材料导报, 2020, 34(10): 10144-10149.
[13] 屈鹏飞, 杨文超, 岳全召, 曹凯莉, 刘林. 镍基高温合金微孪晶形成机制的研究进展[J]. 材料导报, 2019, 33(23): 3971-3978.
[14] 王晓娟, 刘林, 赵新宝, 黄太文, 杨文超, 张军, 傅恒志. 添加碳和硼改善第三代镍基定向凝固高温合金的显微组织和偏析行为[J]. 材料导报, 2019, 33(20): 3452-3459.
[15] 徐子法, 焦俊科, 张正, 杨亚鹏, 张文武. 镍基高温合金激光修复工艺研究[J]. 材料导报, 2019, 33(19): 3196-3202.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed