Please wait a minute...
材料导报  2023, Vol. 37 Issue (12): 21070195-15    https://doi.org/10.11896/cldb.21070195
  高分子与聚合物基复合材料 |
尿素分解制氢催化剂研究进展
王留留1,†, 任洁1,†, 卢星宇1, 邹力1, 谢佳乐1,2,*
1 西南石油大学新能源与材料学院,成都 610500
2 西南石油大学油气藏地质及开发工程国家重点实验室,成都 610500
Research Progress of Urea Splitting Catalysts for Hydrogen Generation
WANG Liuliu1,†, REN Jie1,†, LU Xingyu1, ZOU Li1, XIE Jiale1,2,*
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
下载:  全 文 ( PDF ) ( 19402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氢能既是零碳燃料,又是化石能源和可再生能源之间过渡和转换的桥梁。相对于水分解制氢,尿素分解制氢可以实现节能,以及解决尿素环境污染的问题。尿素具有储量丰富、安全性高和低成本等优点,且其理论上分解制氢性能远优于水分解制氢,是未来氢气获取的重要来源之一。尿素氧化反应(UOR)是尿素分解制氢技术的重要半反应,决定了尿素电解池或尿素燃料电池的工作效率。催化剂在UOR反应中起着关键作用,其本征物化性质以及表面性质会显著影响UOR反应动力学,目前大体发展出无基底材料支撑的镍基催化剂、有基底材料支撑的镍基催化剂和非镍基催化剂三类。
然而,UOR反应的过电位很高,高于理论值约1 000 mV。UOR反应是一种涉及多质子耦合电子转移步骤的复杂反应过程,其具体的反应机理远非简单的C-N键断裂。贵金属基催化剂具有良好的UOR催化性能,但存在价格昂贵和储量不足的缺点。非贵过渡金属基催化剂则成为研究的焦点,其催化性能可能与贵金属基催化剂相当或超过贵金属基催化剂性能。镍基催化剂成为催化UOR反应的明星材料,目前已发展出金属镍、氢氧化镍、氧化镍、磷化镍、镍金属有机框架材料等大量含镍催化剂。进一步,也发展出Ni-Zn-Co、MoO2/Ni2P等含镍复合催化剂。新型UOR催化剂发展的同时,也形成了缺陷工程、结构工程、界面工程等先进的催化剂设计与调控方法。
以镍元素为主要活性成分的UOR催化剂是电催化或光电催化UOR反应的研究焦点,按照催化剂生长基底可以分为无基底材料支撑和有基底材料支撑两类催化剂。近年来,以金属、氧化物、氢氧化物、磷化物和金属有机框架材料等形式存在的非贵金属、高效镍基电催化剂因能降低成本和加速反应动力学而受到广泛关注。另一方面,由钴基、铜基、钼基、锰基和铁基等过渡金属和镍元素复合形成的双金属或者三金属催化剂用于UOR反应也被大量研究。为了解决常见镍基催化剂电导率低的问题,人们在使用泡沫镍、碳基材料、钛网等高导电率基底材料与含镍催化剂形成复合材料方面也进行了不断的尝试。此外,一些新型的非镍基材料也被用作UOR反应的催化剂。
本文归纳了尿素分解制氢催化剂的研究进展,分别对尿素分解制氢原理、电催化尿素氧化催化剂、光电催化尿素氧化催化剂、催化剂设计与合成等进行介绍,分析了尿素分解制氢催化剂面临的问题并展望其前景,以期为制备高效的尿素分解制氢催化剂提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王留留
任洁
卢星宇
邹力
谢佳乐
关键词:  氢能  尿素分解  催化剂  电催化  光电催化    
Abstract: Hydrogen energy is both a zero-carbon fuel and a bridge for the transition and conversion between fossil fuels and renewable energy. Compared to water splitting for hydrogen production, urea splitting is an energy-saving strategy, which can also solve the problem of urea pollution. Urea has the merits of vast reserves, safety, and low cost, and its theoretical potential for urea splitting is far lower than water splitting, which is one of the important sources of hydrogen in the future. Urea oxidation reaction (UOR)is an important half-reaction of the urea splitting for hydrogen production, which determines the efficiency of the urea electrolysis cells or the urea fuel cells. Catalyst plays a key role in UOR reaction, and its physicochemical and surface properties will significantly affect the kinetics of UOR reaction. At present, nickel-based catalysts can be classified into three subsidiary sets:unsupported nickel-based catalysts, supported nickel-based catalysts, and non-nickel-based catalysts.
However, the overpotential of the UOR reaction is high, which is about 1 000 mV higher than the theoretical value. The UOR reaction is a complex reaction process involving several proton-coupled electron transfer steps, whose deep mechanism is much more complex than the simple C-N bond cleavage. Precious metal-based catalysts are frequently applied as benchmarks for UOR catalysis. However, the drawbacks of expensiveness and scarcities are the major reasons for their limiting roles in current scientific research and future commercialization of urea-based technologies. Nonprecious transition metal-based catalysts have become the focus of research, whose catalytic performance may match or even surpass those of the precious metal catalysts. Nickel-based catalyst has become a class of star materials to catalyze UOR reaction, and many nickel-containing catalysts such as nickel metal, nickel hydroxide, nickel phosphate, and nickel metal organic framework materials. Further, nickel-containing composite catalysts such as Ni-Zn-Co, MoO2/Ni2P are also developed recently. The newly controllable methods of UOR catalysts such as the defect engineering, structural engineering and interface engineering are also developed.
The UOR catalysts with nickel as the main active component are the focus of electrocatalytic or photoelectrocatalytic UOR reaction. According to the growth substrate of catalysts, it can be divided into two types of unsupported nickel-based catalysts and supported nickel-based catalysts. In recent years, non-precious metal and high-efficiency nickel-based electrocatalysts in the form of metals, oxides, hydrogen oxides, phosphorides, and metal-organic framework materials have been attracting wide attention for their cost reduction and accelerated reaction kinetics. On the other hand, a bimetal-catalyst or trimetal-catalyst formed by the hybridization of transition metals and nickel elements, including cobalt, copper, molybdenum, manganese, and iron, has also been extensively studied for UOR reactions. To solve the common problem of low conductivity of nickel-based catalyst, continuous attempts have been made to use nickel foam, carbon material, titanium mesh, and other high conductivity substrates with nickel-containing catalysts. In addition, some new non-nickel-based materials are also used as catalysts for the UOR reaction.
This review offers a retrospection of the research efforts with respect to the urea splitting catalysts, and provides elaborate descriptions about the principle of urea splitting, the electrocatalysts for urea splitting, the photoelectrocatalysts for urea splitting, and the rational design/synthesis of UOR catalysts. We then pay attention to the problems confronting the current state-of-the-art UOR catalysts. This review can be used as a refe-rence for the preparation of high-efficient catalysts for hydrogen production from urea splitting.
Key words:  hydrogen energy    urea splitting    catalyst    electrocatalysis    photoelectrocatalysis
出版日期:  2023-06-25      发布日期:  2023-06-20
ZTFLH:  O64  
基金资助: 四川省高层次人才引进计划项目;国家自然科学基金青年科学基金项目(21703150);四川省科技计划项目(2020YJ0123);西南石油大学校级青年科研创新团队项目(2019CXTD10);西南石油大学自然科学“揭榜挂帅”项目(2021JBGS08)和启动基金
通讯作者:  * 谢佳乐,博士,四川省高层次人才引进计划入选者,副研究员,硕士研究生导师。曾于2009年和2014年获得西南大学学士和博士学位;此后在西南大学和德国伊尔梅瑙工业大学以博士后和访问学者身份开展研究工作,现任教于西南石油大学。长期从事低维纳米材料和光伏制氢等相关领域的研究,并取得了一系列研究成果,以第一或通信作者身份在Energy & Environmental Science、Nano Energy、Journal of Materials Chemistry A、ACS Sustainable Chemistry & Engineering等在内的专业期刊上发表学术论文46篇,获授权或公开美国和中国发明专利9项,参与编著出版4部学术专著。jialexie@swpu.edu.cn   
作者简介:  王留留,2018年6月毕业于长春工业大学,获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在谢佳乐副研究员的指导下进行研究。目前主要研究领域为光电催化制氢。
任洁,2019年6月毕业于西安石油大学,获得工学学士学位。现为西南石油大学新能源与材料学院硕士研究生,在谢佳乐副研究员的指导下进行研究。目前主要研究领域为光电催化制氢。
引用本文:    
王留留, 任洁, 卢星宇, 邹力, 谢佳乐. 尿素分解制氢催化剂研究进展[J]. 材料导报, 2023, 37(12): 21070195-15.
WANG Liuliu, REN Jie, LU Xingyu, ZOU Li, XIE Jiale. Research Progress of Urea Splitting Catalysts for Hydrogen Generation. Materials Reports, 2023, 37(12): 21070195-15.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21070195  或          http://www.mater-rep.com/CN/Y2023/V37/I12/21070195
1 Wang G, Wen Z. Nanoscale, 2018, 10(45), 21087.
2 Wang G, Chen J, Li Y, et al. Chemical Communications, 2018, 54(21), 2603.
3 Liu H, Liu Z, Feng L. Nanoscale, 2019, 11(34), 16017.
4 Seh Z W, Kibsgaard J, Dickens C F, et al. Science, 2017, 355(6321), 146.
5 Xia L, Liao Y, Qing Y, et al. ACS Applied Energy Materials, 2020, 3(3), 2996.
6 Zhang Y, Qiu Y, Wang Y, et al. ACS Applied Materials Interfaces, 2021, 13(3), 3937.
7 Zhang J, Bao W, Li M, et al. Chemical Communications, 2020, 56(93), 14713.
8 Wang C, Lu H, Mao Z, et al. Advanced Functional Materials, 2020, 30(21), 2000556.
9 He M, Feng C, Liao T, et al. ACS Applied Materials Interfaces, 2020, 12(2), 2225.
10 Jiang Y, Gao S, Liu J, et al. Nanoscale, 2020, 12(21), 11573.
11 Nadeema A, Kashyap V, Gururaj R, et al. ACS Applied Materials Interfaces, 2019, 11(29), 25917.
12 Rollinson A N, Rickett G L, Lea-Langton A, et al. Applied Catalysis B:Environmental, 2011, 106(3-4), 304.
13 Liu D, Liu T, Zhang L, et al. Journal of Materials Chemistry A, 2017, 5(7), 3208.
14 Chen S, Anthony V J D, Qiao S. Communications, 2016, 128(11), 3868.
15 Yan W, Wang D, Botte G G. Electrochimica Acta, 2012, 61, 25.
16 Ding R, Qi L, Jia M, et al. Nanoscale, 2014, 6(3), 1369.
17 Forslund R P, Mefford J T, Hardin W G, et al. ACS Catalysis, 2016, 6(8), 5044.
18 Boggs B K, King R L, Botte G G. Chemical Communications, 2009(32), 4859.
19 Wang D, Yan W, Botte G G. Electrochemistry Communications, 2011, 13(10), 1135.
20 Liang Y, Liu Q, Asiri A M, et al. Electrochimica Acta, 2015, 153, 456.
21 Yan W, Wang D, Botte G G. Applied Catalysis B:Environmental, 2012, 127, 221.
22 Wang D, Vijapur S H, Wang Y, et al. International Journal of Hydrogen Energy, 2017, 42(7), 3987.
23 Zhu X, Dou X, Dai J, et al. Angewandte Chemie, 2016, 55(40), 12465.
24 King R L, Botte G G. Journal of Power Sources, 2011, 196(22), 9579.
25 Tang C, Zhao Z L, Chen J, et al. Electrochimica Acta, 2017, 248, 243.
26 Nørskov J K, Rossmeisl J, Logadottir A, et al. The Journal of Physical Chemistry B, 2004, 108(46), 17886.
27 Cho K, Hoffmann M R. Environmental Science & Technology, 2014, 48(19), 11504.
28 Zollig H, Remmele A, Fritzsche C, et al. Environmental Science & Technology, 2015, 49(18), 11062.
29 Bezerra  C S, de Sá E L, Nart F C. The Journal of Physical Chemistry B, 1997, 101(33), 6443.
30 Shao M, Chang Q, Dodelet J P, et al. Chemical Reviews, 2016, 116(6), 3594.
31 Ye K, Wang G, Cao D, et al. Topics in Current Chemistry, 2018, 376(6), 42.
32 Suárez D, Díaz N, Merz K M. Journal of the American Chemical Society, 2003, 125(50), 15324.
33 Daramola D A, Singh D, Botte G G. The Journal of Physical Chemistry A, 2010, 114(43), 11513.
34 Vedharathinam V, Botte G G. Electrochimica Acta, 2012, 81, 292.
35 Guo F, Ye K, Cheng K, et al. Journal of Power Sources, 2015, 278, 562.
36 Alex C, Shukla G, John N S. Electrochimica Acta, 2021, 385, 138425.
37 Singh R K, Schechter A. Electrochimica Acta, 2018, 278, 405.
38 Ding Y, Li Y, Xue Y, et al. Nanoscale, 2019, 11(3), 1058.
39 Yang W, Yang X, Hou C, et al. Applied Catalysis B:Environmental, 2019, 259, 118020.
40 Ding R, Li X, Shi W, et al. Electrochimica Acta, 2016, 222, 455.
41 Maruthapandian V, Kumaraguru S, Mohan S, et al. ChemElectroChem, 2018, 5(19), 2795.
42 Khalafallah D, Xiao Y L, Zhi M, et al. ChemElectroChem, 2019, 7(1), 163.
43 Xie J, Gao L, Cao S, et al. Journal of Materials Chemistry A, 2019, 7(22), 13577.
44 Yang D, Yang L, Zhong L, et al. Electrochimica Acta, 2019, 295, 524.
45 Barakat N A M, El-Newehy M H, Yasin A S, et al. Applied Catalysis A:General, 2016, 510, 180.
46 Cao Z, Zhou T, Ma X, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(29), 11007.
47 Shi W, Sun X, Ding R, et al. Chemical Communications, 2020, 56(48), 6503.
48 Sha L, Ye K, Yin J, et al. Chemical Engineering Journal, 2020, 381, 122603.
49 Adhikari S, Kwon Y, Kim D H. Chemical Engineering Journal, 2020, 402, 126192.
50 Zhang Q, Kazim F M D, Ma S, et al. Applied Catalysis B:Environmental, 2021, 280, 119436.
51 Liu G, Huang C, Yang Z, et al. Applied Catalysis A:General, 2021, 614, 118049.
52 Wang X, Wang J, Sun X, et al. Nano Research, 2017, 11(2), 988.
53 Cheng Y, Xiao X, Guo X, et al. ACS Sustainable Chemistry & Enginee-ring, 2020, 8(23), 8675.
54 Wu T H, Hou B W. Catalysis Science & Technology, 2021, 11, 4294.
55 Wang D, Yan W, Vijapur S H, et al. Journal of Power Sources, 2012, 217, 498.
56 Wehrens-Dijksma M, Notten P H L. Electrochimica Acta, 2006, 51(18), 3609.
57 Xu K, Chen P, Li X, et al. Journal of the American Chemical Society, 2015, 137(12), 4119.
58 Trotochaud L, Ranney J K, Williams K N, et al. Journal of the American Chemical Society, 2012, 134(41), 17253.
59 Yang W, Yang X, Li B, et al. Journal of Materials Chemistry A, 2019, 7(46), 26364.
60 Liu X, Ni K, Wen B, et al. ACS Energy Letters, 2019, 4(11), 2585.
61 He Q, Wan Y, Jiang H, et al. ACS Energy Letters, 2018, 3(6), 1373.
62 Liu H, Zhu S, Cui Z, et al. Nanoscale, 2021, 13(3), 1759.
63 Yuan M, Wang R, Sun Z, et al. Inorganic Chemistry, 2019, 58(17), 11449.
64 Li J, Chu D, Dong H, et al. Journal of the American Chemical Society, 2020, 142(1), 50.
65 Periyasamy S, Subramanian P, Levi E, et al. ACS Applied Materials Interfaces, 2016, 8(19), 12176.
66 Hu K, Jeong S, Elumalai G, et al. ACS Applied Energy Materials, 2020, 3(8), 7535.
67 Wu F, Ou G, Yang J, et al. Chemical Communications, 2019, 55(46), 6555.
68 Wang L, Ren L, Wang X, et al. ACS Applied Materials Interfaces, 2018, 10(5), 4750.
69 Yang J H, Chen M, Xu X, et al. Applied Surface Science, 2021, 560, 150009.
70 Liu Z, Zhang C, Liu H, et al. Applied Catalysis B:Environmental, 2020, 276, 119165.
71 Wei D, Tang W, Ma N, et al. Materials Letters, 2021, 291, 129593.
72 Wang L, Zhu Y, Wen Y, et al. Angewandte Chemie, 2021, 60(19), 10577.
73 Xu H, Shi Z X, Tong Y X, et al. Advanced Materials, 2018, 30(21), 1705442.
74 Chaudhari N K, Jin H, Kim B, et al. Nanoscale, 2017, 9(34), 12231.
75 Xu Q, Yu T, Chen J, et al. ACS Applied Materials Interfaces, 2021, 13(14), 16355.
76 Xu H, Liao Y, Gao Z, et al. Journal of Materials Chemistry A, 2021, 9(6), 3418.
77 Wang Q, Cheng X, Sun Y, et al. Materials Advances, 2021, 2(6), 2104.
78 Li R Q, Liu Q, Zhou Y, et al. Journal of Materials Chemistry A, 2021, 9(7), 4159.
79 Modak A, Mohan R, Rajavelu K, et al. ACS Applied Materials Interfaces, 2021, 13(7), 8461.
80 Yang M, Bai Q, Ding C. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2020, 604, 125276.
81 Xu B, Yang X, Liu X, et al. Journal of Power Sources, 2020, 449, 227585.
82 Huang Q, Qiu Y, Luo H, et al. Materials Letters, 2019, 249, 128.
83 Chen G F, Cao X, Wu S, et al. Journal of the American Chemical Society, 2017, 139(29), 9771.
84 Zeng Y, Lin Z, Wang Z, et al. Advanced Materials, 2018, 30(18), 1707290.
85 Liu J, Wang Y, Liao Y, et al. ACS Applied Materials Interfaces, 2021, 13(23), 26948.
86 Xu H, Ye K, Zhu K, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(42), 16037.
87 Abdel Hameed R M, Medany S S. International Journal of Hydrogen Energy, 2017, 42(38), 24117.
88 Abdel H R M, Medany S S. Journal of Colloid and Interface Science, 2018, 513, 536.
89 Zhang J, Xing F, Zhang H, et al. Dalton Transactions, 2020, 49(40), 13962.
90 Tsai W T, Yang J M, Lai C W, et al. Bioresource Technology, 2006, 97(3), 488.
91 Li Z, Zhang L, Amirkhiz B S, et al. Advanced Energy Materials, 2012, 2(4), 431.
92 Lu S, Hummel M, Gu Z, et al. ACS Sustainable Chemistry & Enginee-ring, 2021, 9(4), 1703.
93 Song W, Xu M, Teng X, et al. Nanoscale, 2021, 13(3), 1680.
94 Liu T, Liu D, Qu F, et al. Advanced Energy Materials, 2017, 7(15), 1700020.
95 Sun Y, Duan J, Zhu J, et al. ACS Applied Nano Materials, 2018, 1(12), 6649.
96 Jiang Y, Gao S, Xu G, et al. Journal of Materials Chemistry A, 2021, 9(9), 5664.
97 Wang X, Zhang W, Zhang J, et al. ChemElectroChem, 2021, 8(10), 1881.
98 Xu H, Ye K, Yin J, et al. Journal of Power Sources, 2021, 491, 229592.
99 Dai Z, Du X, Wang Y, et al. Dalton Transactions, 2021, 50(35), 12301.
100 Fang M, Xu W B, Han S, et al. Materials Chemistry Frontiers, 2021, 5(9), 3717.
101 Chen J D, Anthony V, Qiao S Z. Communications, 2016, 128(11), 3868.
102 Wu M S, Chen F Y, Lai Y H, et al. Electrochimica Acta, 2017, 258, 167.
103 Zhu W, Ren M, Hu N, et al. ACS Sustainable Chemistry & Enginee-ring, 2018, 6(4), 5011.
104 Yu Z Y, Lang C C, Gao M R, et al. Energy & Environmental Science, 2018, 11(7), 1890.
105 Wu M S, Jao C Y, Chuang F Y, et al. Electrochimica Acta, 2017, 227, 210.
106 Wei S, Wang X, Wang J, et al. Electrochimica Acta, 2017, 246, 776.
107 Wang G, Ling Y, Lu X, et al. Energy & Environmental Science, 2012, 5(8), 8215.
108 Jeong H W, Park K J, Han D S, et al. Applied Catalysis B:Environmental, 2018, 226, 194.
109 Zhao R, Schumacher G, Leahy S, et al. The Journal of Physical Che-mistry C, 2018, 122(25), 13995.
110 Liu J, Li J, Shao M, et al. Journal of Materials Chemistry A, 2019, 7(11), 6327.
111 Gan J, Rajeeva B B, Wu Z, et al. Journal of Applied Electrochemistry, 2019, 50(1), 63.
112 Zhao R, Schumacher G, Leahy S, et al. The Journal of Physical Che-mistry C, 2018, 122(21), 12891.
113 Xu D, Fu Z, Wang D, et al. Physical Chemistry Chemical Physics, 2015, 17(37), 23924.
114 Zhang L, Wang L, Lin H, et al. Angewandte Chemie, 2019, 58(47), 16820.
115 Zhang J, Xing F, Zhang H, et al. Dalton Transactions, 2020, 49(40), 13962.
116 Sha L, Ye K, Yin J, et al. Chemical Engineering Journal, 2020, 381, 122603.
117 Li Y, Jiang H, Cui Z, et al. The Journal of Physical Chemistry C, 2021, 125(17), 9190.
118 Wu F, Ou G, Yang J, et al. Chemical Communications, 2019, 55(46), 6555.
119 Liu T, Liu D, Qu F, et al. Advanced Energy Materials, 2017, 7(15), 1700020.
120 Chen S, Duan J, Vasileff A, et al. Angewandte Chemie International Edition, 2016, 55(11), 3804.
121 Kumar A, Liu X, Lee J, et al. Energy & Environmental Science, 2021, 14, 6494.
122 Wu F, Ou G, Wang Y, et al. Chemistry-An Asian Journal, 2019, 14(16), 2796.
123 Zöllig H, Remmele A, Fritzsche C, et al. Environmental Science & Technology, 2015, 49(18), 11062.
124 Wang L, Wu Y, Cao R, et al. ACS Applied Materials Interfaces, 2016, 8(26), 16736.
125 Li J, Li J, Gong M, et al. Topics in Catalysis, 2021, 64, 532.
[1] 余裕森, 黎氏琼春, 王天, 张利波. 有机酸在超声作用下对废FCC催化剂中有害金属脱除的影响[J]. 材料导报, 2023, 37(8): 21070229-8.
[2] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[3] 张进治, 谢亮. 复合光催化剂CoFe2O4/BiVO4/电气石的超声-光催化研究[J]. 材料导报, 2023, 37(6): 21090095-6.
[4] 宋丽云, 邓世林, 周宜芸, 李双叶, 展宗城, 李坚, 何洪. V2O5-MoO3/TiO2催化剂的NH3-SCR性能:载体的影响[J]. 材料导报, 2023, 37(6): 21080131-6.
[5] 于舒睿, 杨继凯, 杨雪, 王国政, 尹笑乾. WO3/CuWO4复合薄膜的制备及光电化学性能[J]. 材料导报, 2023, 37(4): 21070015-6.
[6] 江永, 杜亚平. 稀土氧化物复合材料在电催化中的研究进展[J]. 材料导报, 2023, 37(3): 22110067-9.
[7] 唐春, 吴梦南, 段超, 余堂杰, 于姗, 周莹. 基于光电催化的硫化氢高值利用研究进展[J]. 材料导报, 2023, 37(3): 22020097-7.
[8] 王紫莎, 刘俊, 刘晓庆. 挥发性有机污染物光催化降解催化剂的研究进展[J]. 材料导报, 2023, 37(2): 20100198-14.
[9] 秦超, 张鑫, 周奕伦, 孟则达, 刘守清. 单原子铁在硫化钼上的组装及电催化析氢[J]. 材料导报, 2023, 37(11): 21100048-5.
[10] 阳济章, 李德念, 谈强, 廖达秀, 袁浩然, 陈勇. 市政污泥生物炭负载氧化钙催化剂的制备及催化酯交换反应性能研究[J]. 材料导报, 2023, 37(10): 21110211-6.
[11] 许效锐, 莫恒亮, 唐阳, 刘曼曼, 侯婉伊, 李锁定, 赵文芳, 杨恒宇, 万平玉. 加速锰铁氧系氨氮亚硝化催化剂活化的研究[J]. 材料导报, 2023, 37(10): 21120199-6.
[12] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[13] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[14] 王文旋, 刘敏, 邱克强, 董东东, 刘太楷, 李艳辉, 闫星辰. 激光选区熔化甲烷水蒸气催化重整器的结构与催化效率研究[J]. 材料导报, 2022, 36(Z1): 22020089-6.
[15] 王朕, 顾洋, 吴宏坤, 李雪, 曾晓苑. 基于氮掺杂碳纳米管负载超细Ir纳米颗粒的高性能Li-CO2电池[J]. 材料导报, 2022, 36(8): 20120062-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed