1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China 2 Yunnan Provincial KeyLaboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
Abstract: The migration, transformation, and biosafety issues of nanoparticles (NPs) in the environmentis a hot topic in environmental research field. The mechanisms and effects of biofilm formation in the interaction between NPs and microorganisms are the key scientific issues that need to be solved urgently. Microorganisms can cause NPs to adhere to their cell surface or enter their cells through physicochemical methods such as adsorption and internalization. These NPs may trigger stress protective responses in the microorganisms, stimulating biofilm formation, while also potentially exerting toxic effects on the biofilm. This review primarily summarizes the interface interactions between NPs and microorganisms, focusing on adsorption and intracellular uptake, analyzes how the properties of NPs, the types of microorganisms, and environmental conditions constrain the interaction process. Additionally, discusses the formation of biofilms, examining the impact of NPs on biofilm growth, metabolic activity, community composition, and gene expression. Furthermore, explores how biofilm formation influences the dissolution, corrosion, surface passivation, stability, and aggregation of NPs. Finally, the outlook is presented from the perspective of the interaction mechanisms of multi-species biofilms with NPs, the long-term toxicity of NPs in the environment, and the alterations in the migration behavior of NPs caused by biofilms. A deeper understanding of NPs-biofilm interactions and mechanisms shall provide a theoretical basis for further research on the potential environmental and human toxicity of NPs, enabling a more comprehensive risk assessment of NPs.
1 Ijaz I, Gilani E, Nazir A, et al. Green Chemistry Letters and Reviews, 2020, 13(3), 223. 2 Selmani A, Kovaević D, Bohinc K. Advances in Colloid and Interface Science, 2022, 303, 102640. 3 Auffan M, Rose J, Bottero J Y, et al. Nature Nanotechnol, 2009, 4(10), 634. 4 Xu Y Y, Ren L T, Ye Z X, et al. Materials Reports, 2024, 38(Z1), 384 (in Chinese). 许雨茵, 任蓝图, 叶芷欣, 等. 材料导报, 2024, 38(Z1), 384. 5 Ferdous Z, Nemmar A. International Journal of Molecular Sciences, 2020, 21(7), 2375. 6 Gondikas A P, Von Der Kammer F, Reed R B, et al. Environmental Science & Technology, 2014, 48(10), 5415. 7 Peng Q, Tang X, Dong W, et al. Antibiotics, 2022, 12(1), 12. 8 Thi M T T, Wibowo D, Rehm B H A. International Journal of Molecular Sciences, 2020, 21(22), 8671. 9 Desmau M, Carboni A, Le Bars M, et al. Frontiers in Environmental Science, 2020, 8, 82. 10 Maksimova Y G, Zorina A S. Applied Biochemistry and Microbiology, 2024, 60(1), 1. 11 Chwalibog A, Sawosz E, Hotowy A, et al. International Journal of Nanomedicine, 2010, 5, 1085. 12 Joshi A S, Singh P, Mijakovic I. International Journal of Molecular Sciences, 2020, 21(20), 7658. 13 Borthakur P, Hussain N, Darabdhara G, et al. Journal of Environmental Chemical Engineering, 2018, 6(4), 3933. 14 Khan S S, Srivatsan P, Vaishnavi N, et al. Journal of Hazardous Materials, 2011, 192(1), 299. 15 Li C C, Wang Y J, Dang F, et al. Journal of Hazardous Materials, 2016, 308, 21. 16 Ma S, Lin D. Environmental Science-Processes & Impacts, 2013, 15(1), 145. 17 Brayner R, Ferrari-Iliou R, Brivois N, et al. Naon Letters, 2006, 6(4), 866. 18 Huang Z, Zheng X, Yan D, et al. Langmuir, 2008, 24(8), 4140. 19 Cervantes-Avilés P, Barriga-Castro E D, Palma-Tirado L, et al. Microscopy Research & Technique, 2017, 80(10), 1103. 20 Evans C W, Fitzgerald M, Clemons T D, et al. ACS Nano, 2011, 5(11), 8640. 21 Cho E C, Xie J W, Wurm P A, et al. Nano Letters, 2009, 9(3), 1080. 22 Skandani A A, Zeineldin R, Al-Haik M. Langmuir, 2012, 28(20), 7872. 23 Costa V H, Gitz-Francois J J, Schiffelers R M, et al. Journal of Controlled Release, 2017, 266, 100. 24 Mirzajani F, Ghassempour A, Aliahmadi A, et al. Research in Microbiology, 2011, 162(5), 542. 25 Kumar A, Pandey A K, Singh S S, et al. Chemosphere, 2011, 83(8), 1124. 26 Qi H Y, Wang W B, Zheng Y, et al. Microbiology China, 2013, 40(4), 677 (in Chinese). 戚韩英, 汪文斌, 郑昱, 等. 微生物学通报, 2013, 40(4), 677. 27 Schwegmann H, Feitz A J, Frimmel F H. Journal of Colloid and Interface Science, 2010, 347(1), 43. 28 Tripathi S, Champagne D, Tufenkji N. Environmental Science & Technology, 2012, 46(13), 6942. 29 Mitzel M R, Sand S, Whalen J K, et al. Water Research, 2016, 92, 113. 30 Habimana O, Steenkeste K, Fontaine-Aupart M P, et al. Applied and Environmental Microbiology, 2011, 77(1), 367. 31 Canton I, Battaglia G. Chemical Society Reviews, 2012, 41(7), 2718. 32 Joshi N, Ngwenya B T, French C E. Journal of Hazardous Materials, 2012, 241, 363. 33 Jing H, Mezgebe B, Aly Hassan A, et al. Bioresource Technology, 2014, 161, 109. 34 Wang Y, Gélabert A, Michel F M, et al. Geochimica et Cosmochimica Acta, 2016, 188, 368. 35 Abbas Q, Yousaf B, Amina, et al. Environment International, 2020, 138, 105646. 36 Chang T R, Khort A, Saeed A, et al. Journal of Hazardous Materials, 2023, 445, 130586. 37 Li Z Q, Greden K, Alvarez P J J, et al. Environmental Science & Technology, 2010, 44(9), 3462. 38 Lyu P, Li H L, Xu Y, et al. Environment Science, 2022, 43(10), 4502 (in Chinese). 吕萍, 李慧莉, 徐勇, 等. 环境科学, 2022, 43(10), 4502. 39 Canfora L, Malusà E, Salvati L, et al. Applied Soil Ecology, 2015, 88, 50. 40 Lazcano C, Gómez-Brandón M, Revilla P, et al. Biology and Fertility of Soils, 2012, 49(6), 723. 41 Flemming H C, Wuertz S. Nature Reviews Microbiology, 2019, 17(4), 247. 42 Zhao A, Sun J, Liu Y. Frontiers in Cellular and Infection Microbiology, 2023, 13, 1137947. 43 Flemming H C, Wingender J, Szewzyk U, et al. Nature Reviews Micro-biology, 2016, 14(9), 563. 44 Muhammad M H, Idris A L, Fan X, et al. Frontiers in Microbiology, 2020, 11, 928. 45 Sauer K, Stoodley P, Goeres D M, et al. Nature Reviews Microbiology, 2022, 20(10), 608. 46 Ciofu O, Moser C, Jensen P O, et al. Nature Reviews Microbiology, 2022, 20(10), 621. 47 Fulaz S, Vitale S, Quinn L, et al. Trends in Microbiology, 2019, 27(11), 915. 48 Tian F, Li J, Nazir A, et al. Infection and Drug Resistance, 2021, 14, 205. 49 Mahto K U, Kumari S, Das S. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57(3), 305. 50 Wu Y, Cai P, Jing X, et al. Environment International, 2019, 132, 105116. 51 Halan B, Buehler K, Schmid A. Trends in Biotechnology, 2012, 30(9), 453. 52 You G, Hou J, Xu Y, et al. Bioresource Technology, 2015, 194, 91. 53 Sadiq F A, Burmolle M, Heyndrickx M, et al. Critical Reviews in Microbiology, 2021, 47(3), 338. 54 Uruen C, Chopo-Escuin G, Tommassen J, et al. Antibiotics (Basel), 2020, 10, 3. 55 Zhu J, Wang J, Chen Y P, et al. Journal of Hazardous Materials, 2022, 432, 128709. 56 Hathroubi S, Mekni M A, Domenico P, et al. Microbial Drug Resistance, 2017, 23(2), 147. 57 Abriat C, Gazil O, Heuzey M C, et al. ACS Applied Materials & Interfaces, 2021, 13(30), 35356. 58 Choi O, Yu C P, Esteban Fernandez G, et al. Water Research, 2010, 44(20), 6095. 59 Fabrega J, Fawcett S R, Renshaw J C, et al. Environmental Science & Technology, 2009, 43(19), 7285. 60 Sengul A B, Asmatulu E. Environmental Chemistry Letters, 2022, 18(5), 1659. 61 Duran N, Duran M, De Jesus M B, et al. Nanomedicine, 2016, 12(3), 789. 62 Zhang B, Yu P, Wang Z, et al. Environmental Science & Technology, 2020, 54(19), 12358. 63 Ouyang K, Mortimer M, Holden P A, et al. Environment International, 2020, 137, 105485. 64 Yang Y, Alvarez P J J. Environmental Science & Technology Letters, 2015, 2(8), 221. 65 Alizadeh S, Ghoshal S, Comeau Y. Science of the Total Environment, 2019, 647, 1199. 66 Miao L, Wang C, Hou J, et al. Bioresource Technology, 2016, 216, 537. 67 Hou J, Miao L, Wang C, et al. Journal of Hazardous Materials, 2014, 276, 164. 68 Miao L, Wang P, Hou J, et al. Science of the Total Environment, 2019, 653, 705. 69 Awasthi A, Sharma P, Jangir L, et al. Materials Science & Engineering C, 2020, 113, 111021. 70 Bondarenko L, Kovel E, Kydralieva K, et al. Nanomaterials, 2020, 10(8), 1499. 71 Miao L, Wang C, Hou J, et al. Science of the Total Environment, 2017, 579, 588. 72 Yang J L, Li Y F, Liang X, et al. Scientific Reports, 2016, 6, 37406. 73 Sheng Y, Chen Z, Wu W, et al. Drug Discovery Today, 2023, 28(2), 103455. 74 Sahli C, Moya S E, Lomas J S, et al. Theranostics, 2022, 12(5), 2383. 75 Means N, Elechalawar C K, Chen W R, et al. Molecular Aspects of Medicine, 2022, 83, 100993. 76 Tam K H, Djurišić A B, Chan C M N, et al. Thin Solid Films, 2008, 516(18), 6167. 77 Feng K, Zhang Z, Cai W, et al. Molecular Ecology, 2017, 26(21), 6170. 78 Philippot L, Spor A, Henault C, et al. ISME Journal, 2013, 7(8), 1609. 79 Bao S, Wang H, Zhang W, et al. Environmental Pollution, 2016, 219, 696. 80 Pokhrel L R, Dubey B, Scheuerman P R. Environmental Science & Technology, 2013, 47(22), 12877. 81 Zhao J, Wang Z, Dai Y, et al. Water Research, 2013, 47(12), 4169. 82 Brooks A N, Turkarslan S, Beer K D, et al. Wiley Interdisciplinary Reviews-Systems Biology and Medicine, 2011, 3(5), 544. 83 Singh N, Paknikar K M, Rajwade J. Environmental Science:Nano, 2019, 6(6), 1812. 84 Phan D C, Pasha A B M T, Carwile N, et al. Environmental Engineering Science, 2020, 37(5), 328. 85 Zakaria B S, Dhar B R. Science of the Total Environment, 2020, 734, 139395. 86 Li W W, Yu H Q. Bioresource Technology, 2014(160), 15. 87 Li N, Jin Z H, Li T L, et al. Environment Science, 2011, 32(6), 1620 (in Chinese). 李宁, 金朝晖, 李铁龙, 等. 环境科学, 2011, 32(6), 1620. 88 Tourney J, Ngwenya B T. Chemical Geology, 2014, 386, 115. 89 Fang L, Wei X, Cai P, et al. Bioresource Technology, 2011, 102(2), 1137. 90 Avellan A, Simonin M, Mcgivney E, et al. Nature Nanotechnology, 2018, 13(11), 1072. 91 Lowry G V, Gregory K B, Apte S C, et al. Environmental Science & Technology, 2012, 46(13), 6893. 92 Reidy B, Haase A, Luch A, et al. Materials (Basel), 2013, 6(6), 2295. 93 Kaegi R, Voegelin A, Sinnet B, et al. Environmental Science & Technology, 2011, 45(9), 3902. 94 Liu J Y, Sonshine D A, Shervani S, et al. ACS Nano, 2010, 4(11), 6903. 95 Glover R, Miller J, Hutchison J. ACS Nano, 2011, 5(11), 8950. 96 Wheeler K E, Chetwynd A J, Fahy K M, et al. Nature Nanotechnology, 2021, 16(6), 617. 97 He C S, Ding R R, Chen J Q, et al. Water Research, 2020, 178, 115817. 98 Malejko J, Szymańska N, Bajguz A, et al. Journal of Analytical Atomic Spectrometry, 2019, 34(7), 1485. 99 Zhang P, Xu X Y, Zhang X L, et al. Journal of Hazardous Materials, 2021, 409, 124526. 100 Chekli L, Zhao Y X, Tijing L D, et al. Journal of Hazardous Materials, 2015, 284, 190. 101 Fabrega J, Renshaw J, Lead J. Environmental Science & Technology, 2009, 43(23), 9004.