Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24050077-6    https://doi.org/10.11896/cldb.24050077
  无机非金属及其复合材料 |
表面粗糙度对砂浆的MICP表面防护性能的影响
张芮1, 侯福星1, 高瑞晓1, 荣辉2, 王剑云1,*
1 西安交通大学人居环境与建筑工程学院,西安 710049
2 天津城建大学材料科学与工程学院,天津 300192
Influence of Surface Roughness on MICP Surface Protection Performance of Mortar
ZHANG Rui1, HOU Fuxing1, GAO Ruixiao1, RONG Hui2, WANG Jianyun1,*
1 School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049, China
2 School of Materials Science and Engineering, Tianjin Chengjian University, Tianjin 300192, China
下载:  全 文 ( PDF ) ( 7350KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 微生物诱导碳酸钙沉积(MICP)被视为石材、水泥基材料、土遗址等表面防护中极具前景的技术。基于MICP的表面防护效果除了受微生物因素的影响外,还与基材的表面性质相关。本工作采用酸侵蚀法构建了具有不同表面粗糙度的砂浆试块,主要研究了粗糙度对沉积碳酸钙性能的影响,并评价表面防护效果。结果表明:基材表面粗糙度越高,粘附细菌越多,脲酶活性越高,碳酸钙产量也越高。基材与碳酸钙间的机械咬合力随表面粗糙度增长而提高,使得碳酸钙粘聚性能提升。这为提高MICP表面防护效果提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张芮
侯福星
高瑞晓
荣辉
王剑云
关键词:  表面防护  粗糙度  微生物诱导碳酸钙沉积(MICP)  生物碳酸钙    
Abstract: Microbially induced calcium carbonate precipitation (MICP) is regarded as a highly promising technology for surface protection of stone, cementitious materials, soil sites, etc. The surface protection efficiency based on MICP is not only influenced by microbial factors but also related to the surface properties of substrates. In this work, mortar specimens with different surface roughness were constructed using the acid etching method to investigate the effect of roughness on the properties of calcium carbonate and to evaluate the surface protection efficiency. The results indicated that the higher the surface roughness of the substrate, the greater the number of adhered bacteria, the higher the urease activity, and the increased yield of calcium carbonate. The mechanical interlocking strength between the substrate and calcium carbonate increased with the increase of surface roughness, leading to the improvement of calcium carbonate cohesion. This provided a theoretical basis for enhancing the surface protection efficiency of MICP.
Key words:  surface protection    roughness    microbially induced calcium carbonate precipitation (MICP)    biogenic calcium carbonate
发布日期:  2025-05-29
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51908459);陕西省自然科学基础研究计划项目(2020JM-040)
通讯作者:  *王剑云,博士,国家级青年人才,西安交通大学人居学院土木工程系教授、博士研究生导师。主要从事新型环境友好生物材料在土木工程领域的研究,包括微生物矿化沉积碳酸钙、微生物自修复混凝土、生物可再生混凝土、生物水泥、固废资源化等。jianyun.wang@xjtu.edu.cn   
作者简介:  张芮,西安交通大学人居环境与建筑工程学院博士研究生,在王剑云教授的指导下进行研究。目前主要研究领域为建筑固废资源化、建材表面防护等。
引用本文:    
张芮, 侯福星, 高瑞晓, 荣辉, 王剑云. 表面粗糙度对砂浆的MICP表面防护性能的影响[J]. 材料导报, 2025, 39(11): 24050077-6.
ZHANG Rui, HOU Fuxing, GAO Ruixiao, RONG Hui, WANG Jianyun. Influence of Surface Roughness on MICP Surface Protection Performance of Mortar. Materials Reports, 2025, 39(11): 24050077-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050077  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24050077
1 Chen Z F, Liu G F, Qin Y L, et al. Journal of Building Materials, 2012, 15(3), 391(in Chinese).
陈正发, 刘桂凤, 秦彦龙, 等. 建筑材料学报, 2012, 15(3), 391.
2 Sun J Y, Huang K, Jiang H Q. Journal of Building Materials, 2007(5), 583(in Chinese).
孙家瑛, 黄科, 蒋华钦. 建筑材料学报, 2007(5), 583.
3 Guo K, Tong Z, Zhang S F, et al. Journal of Building Materials, 2023, 26(11), 1183(in Chinese).
郭凯, 佟舟, 张树峰, 等. 建筑材料学报, 2023, 26(11), 1183.
4 Hoseini M, Bindiganavile V, Banthia N. Cement and Concrete Composites, 2009, 31(4), 213.
5 Basheer L, Kropp J, Cleland D J. Construction and Building Materials, 2001, 15(2-3), 93.
6 Chen S H, Wang J L. Journal of Building Materials, 2023, 26(5), 530(in Chinese).
陈绍华, 王菊琳. 建筑材料学报, 2023, 26(5), 530.
7 Rajasekar A, Wilkinson S, Moy C K. Environmental Science and Ecotechnology, 2021, 6, 100096.
8 Zhang K, Tang C S, Jiang N J, et al. Environmental Earth Sciences, 2023, 82(9), 229.
9 De Muynck W, Cox K, De Belie N, et al. Construction and Building Materials, 2008, 22(5), 875.
10 De Muyuck W, Leuridan S, Van L D, et al. Applied and Environmental Microbiology, 2011, 77(19), 6808.
11 Li S, Chen D F, Lu Y Y, et al. Journal of Building Materials, 2023, 26(8), 914(in Chinese).
李杉, 陈得锋, 卢亦焱, 等. 建筑材料学报, 2023, 26(8), 914.
12 Gu X L, Hong L, Wang Z L, et al. Construction and Building Materials, 2013, 46, 156.
13 Van W W, Vermolen F, Van M G, et al. Transport in Porous Media, 2011, 87, 397.
14 Zhang R, Wu K, Xie D Z, et al. Applied Microbiology and Biotechnology, 2023, 107(5-6), 1525.
15 Morrison G R. Analytical Biochemistry, 1971, 43(2), 527.
16 Zhang R, Xie D Z, Wu K, et al. Cement and Concrete Composites, 2023, 139, 105031.
17 Wang J Y, Jonkers H M, Boon N, et al. Applied Microbiology and Biotechnology, 2017, 101, 5101.
18 Ali A, Li M, Su J F, et al. Science of the Total Environment, 2022, 813, 152668.
19 Rodriguez-blanco J D, Shaw S, Benning L G. Nanoscale, 2011, 3(1), 265.
20 Gebru K A, Kidanemariam T G, Gebretinsae H K. Chemical Engineering Science, 2021, 238, 116610.
21 Sovljanski O, Pezo L, Tomic A, et al. Journal of Basic Microbiology, 2021, 61(9), 835.
22 Zhang R, Wang J Y. Construction and Building Materials, 2023, 403, 133119.
[1] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[2] 肖易航, 郑军, 何勇明. 气泡在粗糙表面的润湿行为研究[J]. 材料导报, 2023, 37(23): 22030060-7.
[3] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[4] 郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
[5] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[6] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[7] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[8] 李崇智, 王梦宇, 牛振山. 渗透结晶型表面防护剂对混凝土耐久性的影响[J]. 材料导报, 2021, 35(Z1): 247-250.
[9] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[10] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[11] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[12] 徐善华, 宋翠梅, 李晗. 模拟海洋和一般大气环境下锈蚀钢材表面形貌差异研究[J]. 材料导报, 2021, 35(2): 2125-2132.
[13] 陈沁文, 苏依林, 李敏, 钱春香. 基于碳酸钙标记的水泥基材料裂缝自修复表征[J]. 材料导报, 2021, 35(14): 14045-14051.
[14] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[15] 王梦宇, 李崇智, 牛振山. 渗透结晶型防护剂对混凝土防水抗蚀性能的影响[J]. 材料导报, 2020, 34(Z1): 185-188.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[4] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[5] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[6] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[7] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[8] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[9] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[10] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed