Please wait a minute...
材料导报  2023, Vol. 37 Issue (19): 22060032-6    https://doi.org/10.11896/cldb.22060032
  无机非金属及其复合材料 |
基于CT扫描及图像处理技术的机制砂形貌研究
韩照1,2, 张云升1,2,*, 乔宏霞1,2, 冯琼1,2, 薛翠真1,2, 尚明刚1,2
1 兰州理工大学土木工程学院,兰州 730050
2 高性能土木工程材料国家重点实验室甘肃研究基地,兰州 730050
Study on Morphology of Manufactured Sand Based on CT Scanning and Image Processing Technology
HAN Zhao1,2, ZHANG Yunsheng1,2,*, QIAO Hongxia1,2, FENG Qiong1,2, XUE Cuizhen1,2, SHANG Minggang1,2
1 School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of High Performance Civil Engineering Materials Gansu Research Base, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 15051KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前关于机制砂形貌的研究往往集中在以球形度为代表的宏观参数上,这可能存在一定的片面性。为从宏观到微观系统地研究机制砂形貌,本工作将砂形貌参数分为四个维度,即球形度、凸率、粗糙度、比表面积;基于CT扫描采集了三种岩性、两个粒级的砂样数字图像,使用Avizo、Matlab软件经图像处理后定量计算出砂粒形貌参数;建立了形貌参数函数公式,揭示了四个维度参数之间的相互关系。研究表明:该图像处理方法可以较高精度地计算出砂形貌参数;将砂粒表面通过SEM分别放大50倍、200倍后,可以进一步发现凸率适合于描述放大50倍的砂形貌,表面粗糙度适合于描述放大200倍的砂形貌;球形度、凸率、粗糙度与粒级无关,比表面积与粒级成反比;球形度与凸率服从Weibull分布,而粗糙度与比表面积服从正态分布。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩照
张云升
乔宏霞
冯琼
薛翠真
尚明刚
关键词:  机制砂  CT扫描  图像处理  形貌参数  球形度  凸率  粗糙度  比表面积    
Abstract: At present, the research on the morphology of manufactured sand often focuses on the macro parameters represented by sphericity, which may be a certain one-sided in this. To comprehensively study the morphology of manufactured sand from macro to micro, the sand morpho-logy parameters are decomposed into the following four dimensions:sphericity, convex ratios, roughness and specific surface area. Based on CT scanning, digital images of sand samples of 2 particle sizes and 3 lithologies were collected, and the sand morphology parameters were calcula-ted quantitatively after the image was processed by Avizo and Matlab software; the function formula of morphology parameters was established, and the relationship between the four dimensional parameters was revealed. It is found that:the image processing method can calculate the sand morphology parameters with high accuracy; after magnifying the sand surface 50 and 200 times by SEM, it can be further found that the convex ratios is suitable for describing the sand morphology at a magnification of 50 times, and the surface roughness is suitable for describing the sand morphology at a magnification of 200 times; sphericity, convex ratios, and roughness are independent of particle size, the specific surface area is inversely proportional to particle size; it is concluded that sphericity and convex ratios obey Weibull distribution, while roughness and specific surface area obey normal distribution.
Key words:  manufactured sand    CT scanning    image processing    morphology parameter    sphericity    convex ratio    roughness    specific surface area
出版日期:  2023-10-10      发布日期:  2023-09-28
ZTFLH:  TU521.1  
基金资助: 国家自然科学基金(U21A20150;52008196;52108219); 甘肃省高等学校产业支撑计划项目(2022CYZC-25); 甘肃省青年科技基金项目(20JR5RA440)
通讯作者:  *张云升,兰州理工大学土木工程学院教授、博士研究生导师,长江学者。2004年毕业于东南大学,获得工学博士学位。目前主要从事机制砂高性能混凝土、新型建筑材料及制品、工业废渣资源化利用等方面的工作。发表SCI及EI学术论文共160余篇,包括Cement and Concrete Research、Cement and Concrete Composites、Construction and Building Materials等。zhangyunsheng2011@163.com   
作者简介:  韩照,分别于2008年6月、2012年12月在中国人民解放军空军工程大学获工学学士学位和硕士学位。现为兰州理工大学土木工程学院博士研究生,在张云升教授的指导下进行研究。目前主要研究领域为机制砂高性能混凝土。
引用本文:    
韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
HAN Zhao, ZHANG Yunsheng, QIAO Hongxia, FENG Qiong, XUE Cuizhen, SHANG Minggang. Study on Morphology of Manufactured Sand Based on CT Scanning and Image Processing Technology. Materials Reports, 2023, 37(19): 22060032-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22060032  或          http://www.mater-rep.com/CN/Y2023/V37/I19/22060032
1 Jiang Z W, Mei S L, Ren Q. Manufactured sand high performance concrete (second edition), Chemical Industry Press, China, 2020, pp. 9 (in Chinese).
蒋正武, 梅世龙, 任强. 机制砂高性能混凝土(第二版), 化学工业出版社, 2020, pp, 9.
2 Huang Y, Wang L. Procedia Engineering, 2017, 210, 87.
3 Cortes D D, Kim H K, Palomino A M, et al. Cement and Concrete Research, 2008, 38(10), 1142.
4 Zhang J, Li D, Wang Y. Journal of Cleaner Production, 2020, 258, 120665.
5 Cho G C, Dodds J, Santamarina J C. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5), 591.
6 Kuo C Y, Frost J D, Lai J S, et al. Transportation Research Record, 1996, 1526(1), 98.
7 Masad E, Olcott D, White T, et al. Transportation Research Record, 2001, 1757(1), 148.
8 Ghasemi Y, Rajczakowska M, Emborg M, et al. Magazine of Concrete Research, 2020, 72(2), 88.
9 Mora C F, Kwan A K H. Cement and Concrete Research, 2000, 30(3), 351.
10 Masad E, Button J W, Computer-Aided Civil and Infrastructure Enginee-ring, 2000, 15(4), 273.
11 Chandan C, Sivakumar K, Masad E, et al. Journal of Computing in Civil Engineering, 2004, 18(1), 75.
12 Rao C, Tutumluer E, Kim I T. Transportation Research Record, 2002, 1787(1), 117.
13 Cepuritis R, Garboczi E J, Ferraris C F, et al. Advanced Powder Technology, 2017, 28(3), 706.
14 Erdogan S T. Journal of Materials in Civil Engineering, 2016, 28(8), 10.
15 Cepuritis R, Wigum B J, Garboczi E J, et al. Cement & Concrete Composites, 2014, 54, 2.
16 Li N, Zhao Y R. Materials Reports, 2021, 35(21), 21169 (in Chinese).
李娜, 赵燕茹. 材料导报, 2021, 35(21), 21169.
17 Liu F, Zhang K K, Luo T, et al. Materials Reports, 2022, 36(8), 116 (in Chinese).
刘方, 张昆昆, 罗滔, 等. 材料导报, 2022, 36(8), 116.
18 Zhao B, Wang J. Powder Technology, 2016, 291, 262.
19 Xia Z Y, Liu J, Kang Y Q, et al. Journal of Chongqing Technology and Business University(Natural Science Edition), 2023, 40(2), 64.
夏振宇, 刘进, 亢艳芹, 等. 重庆工商大学学报(自然科学版), 2023, 40(2), 64.
20 Fu R, Hu X L, Zhou B, et al. Rock and Soil Mechanics, 2018, 39(2), 483 (in Chinese).
付茹, 胡新丽, 周博, 等. 岩土力学, 2018, 39(2), 483.
21 Hafid H, Ovarlez G, Toussaint F, et al. Cement and Concrete Research, 2016, 80, 44.
22 Zeng X H, Dai Y P, Qu F L, et al. Journal of Southwest Jiaotong University, 2017, 52(1), 69 (in Chinese).
曾晓辉, 戴亚鹏, 瞿福林, 等. 西南交通大学学报, 2017, 52(1), 69.
23 General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. GB/T 3505-2009/ISO 4287:1997. Stan-dards Press of China, China, 2009, pp. 7 (in Chinese).
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 3505-2009/ISO 4287:1997. 中国标准出版社, 2009, pp. 7.
24 Villa C, Primeau C, Hesse U, et al. Clinical Physiology and Functional Imaging, 2017, 37(2), 183.
25 Ghasemi Y, Emborg M, Cwirzen A. Magazine of Concrete Research, 2018, 70(10), 533.
[1] 蔡成林, 李泽贤, 印峰. 维氏硬度试验中的视觉检测算法研究综述[J]. 材料导报, 2023, 37(8): 21070036-10.
[2] 盛蕊, 唐婷婷, 田敏, 袁舒慧, 张苏, 范壮军. 耐热酚醛树脂基活性炭的制备及其超级电容器性能研究[J]. 材料导报, 2023, 37(4): 21040224-7.
[3] 郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
[4] 项赫, 姜亚明, 杨晨, 周艺颖. 基于双目视觉的纬编双轴向壳体复合材料纱线取向检测方法[J]. 材料导报, 2023, 37(14): 21110125-6.
[5] 胡时, 蔡海兵, 马祖桥, 袁助, 丁祖德. 不同加载速率下饱水高延性喷射混凝土的单轴压缩试验[J]. 材料导报, 2022, 36(8): 21090227-10.
[6] 刘娟红, 孟翔, 段品佳, 马焜. 基于MATLAB的混凝土裂缝宽度计算方法研究[J]. 材料导报, 2022, 36(6): 21010082-6.
[7] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[8] 罗志强, 赖家美, 黄志超, 莫明智, 李美艳. 缝合碳纤维泡沫夹芯复合材料反复低速冲击性能研究[J]. 材料导报, 2022, 36(19): 21050268-8.
[9] 牛荻涛, 罗扬, 苏丽, 黄大观. 玄武岩-聚丙烯混杂纤维增强混凝土气孔结构分形分析[J]. 材料导报, 2022, 36(13): 20120198-6.
[10] 黄明吉, 李斌, 董秀萍. 基于三维骨架细化的金属橡胶三维建模方法研究[J]. 材料导报, 2022, 36(1): 20120035-5.
[11] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[12] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[13] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[14] 明帅强, 文庆涛, 高雅增, 闫美菊, 卢维尔, 夏洋. 基于原子层沉积技术制备氧化钽薄膜及其特性研究[J]. 材料导报, 2021, 35(6): 6042-6047.
[15] 张广田, 刘娟红, 孔丽娟, 吴瑞东. 石英岩型铁尾矿机制砂中石粉的吸附特性及机理[J]. 材料导报, 2021, 35(6): 6071-6077.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed