Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 22040004-7    https://doi.org/10.11896/cldb.22040004
  无机非金属及其复合材料 |
石英玻璃微流道超声振动磨削加工及流动阻力特性研究
郭明荣, 鲁艳军*, 陈润华
深圳大学机电与控制工程学院,广东 深圳 518060
Study on Ultrasonic Vibration Grinding and Flow Resistance Characteristics of Quartz Glass Micro-channel
GUO Mingrong, LU Yanjun*, CHEN Runhua
College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 13397KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石英玻璃微流控芯片在医学诊断、生化分析和药物筛选等领域具有广阔的应用前景,高性能石英玻璃微流道的加工质量直接决定微流控芯片的使用性能。本工作采用超声振动磨削加工技术对石英玻璃微流道进行高效精密加工,首先研究了主轴转速N、进给速度vf、磨削深度ap和超声功率P对微流道表面质量和形状精度的影响,然后对超声振动磨削工艺参数进行优化,最后测试微流道的水流阻力,研究微流道水力直径对其流动阻力特性的影响。超声振动磨削加工实验结果表明:石英玻璃微流道的表面粗糙度Ra可达较小值0.191 μm,形状精度RMS值和PV值分别达到3.332 μm和23.783 μm,并且微流道表面形貌完整,底部微观表面光滑,边缘整齐无明显崩边。流动性测试实验结果表明:石英玻璃微流道内流动摩擦阻力系数随雷诺数和水力直径的增大而减小,因此设计微流道时应尽量选择较大的水力直径,并且适当增大流速。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭明荣
鲁艳军
陈润华
关键词:  超声振动磨削  微流道  表面粗糙度  形状精度  阻力特性    
Abstract: Quartz glass microfluidic chips have broad application prospects in the fields of medical diagnosis, biochemical analysis and drug screening. The processing quality of high-performance quartz microchannel directly determines the performance of microfluidic chips. In this work, the ultrasonic vibration grinding technology was used to process the quartz glass microchannel efficiently and precisely. First, the effects of the spindle speed N, feed speed vf, grinding depth ap and the ultrasonic power P on the surface quality and shape accuracy of the microchannel were studied. Then the ultrasonic vibration grinding process parameters were optimized. Finally, the water flow resistance of the microchannel was tested to study the influences of the hydraulic diameter of the microchannel on flow resistance characteristics. The experimental results of ultraso-nic vibration grinding show that the surface roughness Ra of the quartz glass microchannel can reach a minimum value of 0.191 μm, the shape accuracy RMS value and PV value can reach 3.332 μm and 23.783 μm, respectively. The surface morphology of microchannel is integrated with smooth bottom microscopic surface and regular edges without obvious breakage. The experimental results of the fluidity test show that the frictio-nal resistance coefficient of the flow in the quartz glass microchannel decreases with the increase of Reynolds number and hydraulic diameter. Therefore, when designing the microchannel, a larger hydraulic diameter should be selected and the flow rate should be appropriately increased.
Key words:  ultrasonic vibration grinding    micro-channel    surface roughness    form accuracy    resistance characteristics
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TH161  
基金资助: 国家自然科学基金(51805334);中国台北科技大学与深圳大学学术合作专题(2020002)
通讯作者:  *鲁艳军,深圳大学机电与控制工程学院副研究员、硕士研究生导师。本科和硕士就读于武汉工程大学机电工程学院,2015年6月在华南理工大学机械制造及其自动化专业取得博士学位。主要研究方向为精密/超精密加工工艺与装备、磨削加工、微纳结构加工及应用。主持和完成国家自然科学基金、中国博士后科学基金、广东省科技计划项目、深圳市国际科技合作项目、企业横向项目等15项,在International Journal of Machine Tools and Manufacture、《机械工程学报》等期刊发表论文20余篇,获授权发明专利15项、PCT专利5项。luyanjun@szu.edu.cn; luyanjun_szu@163.com   
作者简介:  郭明荣,2020年6月于江西理工大学应用科学学院获得工学学士学位,本科期间多次荣获国家级奖学金、校三好学生标兵等荣誉称号。现为深圳大学机电与控制工程学院机械工程专业硕士研究生。目前主要研究方向为精密磨削加工、微流控器件。
引用本文:    
郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
GUO Mingrong, LU Yanjun, CHEN Runhua. Study on Ultrasonic Vibration Grinding and Flow Resistance Characteristics of Quartz Glass Micro-channel. Materials Reports, 2023, 37(17): 22040004-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22040004  或          http://www.mater-rep.com/CN/Y2023/V37/I17/22040004
1 Yuan Y X, Fan C, Pan J Z, et al. Chinese Journal of Chromatography, 2020, 38(2), 183 (in Chinese).
袁颖欣, 樊晨, 潘建章, 等. 色谱, 2020, 38(2), 183.
2 Xiao T R, Zou W, Liu J. Chinese Journal of Biotechnology, 2021, 37(11), 3905 (in Chinese).
夏韬然, 邹伟, 刘晶. 生物工程学报, 2021, 37(11), 3905.
3 Pang L, Bao Y R, Meng X S, et al. Central South Pharmacy, 2015, 13(3), 241 (in Chinese).
庞磊, 包永睿, 孟宪生, 等. 中南药学, 2015, 13(3), 241.
4 Wang Z, Zheng H, Zhou W. Laser and Particle Beams, 2009, 27(3), 521.
5 Zheng X L, Yan J W, Hu N, et al. Transducer and Microsystem Techno-logies, 2011, 30(6), 1 (in Chinese).
郑小林, 鄢佳文, 胡宁, 等. 传感器与微系统, 2011, 30(6), 1.
6 Chen X, Wang H, Zhang W. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(8), 1.
7 Gao S, Geng Z C, Wu Y Q, et al. Journal of Mechanical Engineering, 2019, 55(5), 186 (in Chinese).
高尚, 耿宗超, 吴跃勤, 等. 机械工程学报, 2019, 55(5), 186.
8 Chen L, Liu X D, Liu J, et al. Acta Optica Sinica, 2020, 40(23), 145 (in Chinese).
陈亮, 刘晓东, 刘静, 等. 光学学报, 2020, 40(23), 145.
9 Nakanishi H, Nishimoto T, Nakamura N. In:Proceedings IEEE the Tenth Annual International Workshop on Micro Electro Mechanical Systems. Nagoya, 1997, pp. 299.
10 Xie J, Guo A D, Lu K, et al. Optics and Precision Engineering, 2020, 28(8), 1743 (in Chinese).
谢晋, 郭奥钿, 卢阔, 等. 光学精密工程, 2020, 28(8), 1743.
11 Zhang C P, Tang D W, Qu W, et al. Journal of University of Shanghai for Science and Technology, 2008, 30(1), 55(in Chinese).
张春平, 唐大伟, 曲伟, 等. 上海理工大学学报, 2008, 30(1), 55.
12 Huang H, Borhani N, Thome J R. International Journal of Heat and Mass Transfer, 2016, 98, 596.
13 Timung S, Chaudhuri J, Borthakur M P, et al. Electrophoresis, 2017, 38(11), 1450.
14 Zhu X, Chen H K, Chen J B, et al. Electromachining & Mould, 2018(S1), 9 (in Chinese).
朱旭, 陈宏堃, 陈剑彬, 等. 电加工与模具, 2018(S1), 9.
15 Jain A, Singh G, Jain V. Measurement, 2020, 160, 107844.
16 Jia J N. Study on fluid flow and heat transfer performance in micro-channel. Master’s Thesis, Shandong University, China, 2019 (in Chinese).
贾俊楠. 微流道内流体流动特性和传热性能研究. 硕士学位论文, 山东大学, 2019.
17 Zhang C P, Tang D W, Qu W, et al. University of Shanghai for Science and Technology, 2008(1), 55 (in Chinese).
张春平, 唐大伟, 曲伟, 等. 上海理工大学学报, 2008(1), 55.
18 Lu Y J, Liu B, Chen F M, et al. Journal of Mechanical Engineering, 2022, 58(1), 244 (in Chinese).
鲁艳军, 刘博, 陈福民, 等. 机械工程学报, 2022, 58(1), 244.
19 Jiang B, Zhu L, Min L, et al. Polymers, 2019, 11(4), 608.
20 Liu Z M, Pang Y. Engineering Mechanics, 2012, 29(5), 200 (in Chinese).
刘赵淼, 逄燕. 工程力学, 2012, 29(5), 200.
21 Xu B, Ooti K T, Wong N T, et al. International Communications in Heat and Mass Transfer, 2000, 27(8), 1165.
22 Hou Y L, Wang J W. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(5), 417 (in Chinese).
侯亚丽, 汪建文. 排灌机械工程学报, 2015, 33(5), 417.
23 Yun H M, Chen L, Wang L Q, et al. Journal of Engineering Thermophysics, 2007, 28 (S2), 33 (in Chinese).
云和明, 程林, 王立秋, 等. 工程热物理学报, 2007, 28(S2), 33.
[1] 杨旭, 历新宇, 周娟苹, 姜男哲. 含重金属离子废水处理技术研究进展[J]. 材料导报, 2023, 37(9): 21090197-10.
[2] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[3] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[4] 金鑫源, 兰亮, 何博, 朱奥迪, 高双. 选区激光熔化成形金属零件表面粗糙度研究进展[J]. 材料导报, 2021, 35(3): 3168-3175.
[5] 耿继业, 蓝嘉昕, 刘通, 诸葛祥群, 罗志虹, 李义兵, 罗鲲. 3D打印聚氨酯微流道封装镓基液态金属柔性导线及其性能[J]. 材料导报, 2021, 35(20): 20040-20044.
[6] 郭翠霞, 吴张永, 谢文玲, 张建平, 张莲芝, 邹应辉. 基于SiC纳米工作液和常规乳化液的高速走丝电火花线切割加工表面特性的对比研究[J]. 材料导报, 2021, 35(10): 10166-10170.
[7] 梁静静, 张相召, 赵光辉, 刘桂武, 邵海成, 乔冠军. 磨削加工对Al2O3陶瓷表面质量与力学性能的影响[J]. 材料导报, 2020, 34(16): 16020-16024.
[8] 马英怡, 刘玉德, 石文天, 韩冬, 侯岩军. 芳纶纤维增强复合材料的微铣削与铣磨精加工[J]. 材料导报, 2020, 34(16): 16177-16181.
[9] 肖长江, 窦志强, 朱振东. 氧化铁刻蚀金刚石表面形貌的表征及形成机理[J]. 材料导报, 2020, 34(14): 14045-14050.
[10] 孙书兵, 刘艳松, 何小珊, 王锋, 何智兵, 黄景林, 刘磊. 空心微球上Al-W多层涂层的制备与表征[J]. 材料导报, 2018, 32(24): 4297-4302.
[11] 王毅, 王盼, 索红莉, 贾强, 卢东琪, 李怀洲, 吴海明. 哈氏合金电化学抛光工艺的研究*[J]. 《材料导报》期刊社, 2017, 31(2): 37-40.
[12] 余剑武, 胡其丰, 段文, 何利华, 沈湘. 电加工8418钢的能量分配与表面粗糙度模型*[J]. 《材料导报》期刊社, 2017, 31(14): 153-157.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed