Please wait a minute...
材料导报  2023, Vol. 37 Issue (23): 22030060-7    https://doi.org/10.11896/cldb.22030060
  无机非金属及其复合材料 |
气泡在粗糙表面的润湿行为研究
肖易航, 郑军*, 何勇明
成都理工大学能源学院,成都 610059
Investigation of Wetting Behaviors for Air Bubble on Rough Surfaces
XIAO Yihang, ZHENG Jun*, HE Yongming
College of Energy, Chengdu University of Technology, Chengdu 610059, China
下载:  全 文 ( PDF ) ( 5282KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 目前,润湿状态及粗糙度对气泡润湿行为的影响尚不清晰。为了系统研究气泡润湿行为,在强亲水至疏水范围内的液体中,对三种不同粗糙度(r)固体表面(S1 r=1.15、 S2 r=1.64、 S3 r=2.29)上气泡的表观接触角及润湿滞后效应进行实验,得出杨氏接触角、粗糙度与气泡润湿行为之间的定性关系。结果表明:气泡润湿行为符合摩擦力理论;表观接触角与润湿滞后效应随着粗糙度的增加而减小;在亲水状态中,气泡受浮力与静水压力挤压,出现失真的表观接触角;随着杨氏接触角的增加,亲水体系中表观接触角与润湿阻力系数均无明显变化,当接近中性润湿状态时,表观接触角服从气泡Cassie-Baxter方程,S1与S2的润湿滞后效应明显增强,且S2的增加幅度小于S1,而S3的润湿滞后效应无明显变化;当接近中性润湿状态时,S1上气泡的表观接触角与液滴后退角相等、液滴表观接触角与气泡前进角相等,而更为粗糙的固体表面(S2、S3)未出现此现象。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖易航
郑军
何勇明
关键词:  气泡  润湿性  粗糙度  捕泡法  移动针头法    
Abstract: At present, the effects of wettability and roughness on bubble wetting behaviors are not clear. To systematically study the bubble wetting behaviors, bubble apparent contact angle and contact angle hysteresis experiments were conducted. And qualitative relationships between Young's contact angle, surface roughness and bubble wetting behaviors from strongly hydrophilicity to hydrophobicity on three solid surfaces with different surface roughness (S1 r=1.15, S2 r=1.64, S3 r=1.64). Results show that wetting behaviors of bubble follow the friction force theory. With the increase of roughness, the apparent contact angle and contact angle hysteresis decrease. Distorted apparent contact angles occur in hydrophilic states resulted from buoyancy and hydrostatic pressure. With increasing of Young's contact angle, the apparent contact angle and contact angle hysteresis keep unchanged under hydrophilic states. However, in neutrally-wet states, apparent contact angle starts following the Cassie-Baxter equation, contact angle hysteresis also significantly increases on the S1 and S2, and increasing rate of S2 is less than that of S1. Contact angle hysteresis of S3 keeps unchanged with different wetting states. When wettability reaches neutrally-wet state, bubble apparent contact angles are equal to drop receding angles, drop apparent contact angles are equal to bubble advancing angles for S1, while these phenomena do not present on more rough surfaces (S2, S3).
Key words:  air bubble    wettability    roughness    captive bubble    moving needle method
出版日期:  2023-12-10      发布日期:  2023-12-08
ZTFLH:  O647.5  
基金资助: 四川省科技计划资助(2022NSFSC0189)
通讯作者:  * 郑军,成都理工大学能源学院副教授,博士研究生导师。2003年、2007年、2011年获成都理工大学工学学士、工学硕士,工学博士学位。目前主要从事油气储层物性测试及建模技术等方面的研究工作。发表论文20余篇,包括Journal of Petroleum Science and Engineering、Colloids and Surfaces A、International Journal of Multiphase Flow等学术期刊,获授权发明专利10余项。61433095@qq.com   
作者简介:  肖易航,成都理工大学能源学院讲师。2016年、2019年、2023年分别获成都理工大学工学学士、工学硕士、工学博士学位。目前主要从事多相渗流机理及表面润湿行为等方面的研究工作。发表论文19篇,包括Colloids and Surfaces A、Geoenergy Science and Engineering等学术期刊,获授权发明专利5项。
引用本文:    
肖易航, 郑军, 何勇明. 气泡在粗糙表面的润湿行为研究[J]. 材料导报, 2023, 37(23): 22030060-7.
XIAO Yihang, ZHENG Jun, HE Yongming. Investigation of Wetting Behaviors for Air Bubble on Rough Surfaces. Materials Reports, 2023, 37(23): 22030060-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22030060  或          http://www.mater-rep.com/CN/Y2023/V37/I23/22030060
1 Sun X X, Yao Y B, Liu D M,et al. International Journal of Coal Geology, 2018, 188, 38.
2 Guo J C, Tao L, Chen C, et al. Acta Petrolei Sinica, 2020, 41(2), 216 (in Chinese).
郭建春, 陶亮, 陈迟,等. 石油学报, 2020, 41(2), 216.
3 Jeon D, Park J, Shin C, et al. Science Advance, 2020, 6(15), 3944.
4 Yu F W, Gao Z D, Zhu W H, et al. Petroleum Exploration and Development, 2021, 48(5), 1004 (in Chinese).
于馥玮, 高振东, 朱文浩,等. 石油勘探与开发, 2021, 48(5), 1004.
5 Maiolo D, Federici S, Ravelli L, et al. Journal of Colloid and Interface Science, 2013, 402, 334.
6 Jmoas S J, Stieg A Z, Richardson W, et al. Journal of Physical Chemistry Letters, 2015, 6(3), 388.
7 Hosoda N, Gorb S N. Proceedings Biological Sciences, 2012, 279(1745), 4236.
8 Jiang Y L, Duan J L, Jiang T T, et al. Micron, 2021, 146, 103073.
9 Wang J M, Zheng Y M, Nie F Q, et al. Langmuir, 2009, 25(24), 14129.
10 Jura-Morawiec J, Marcinkiewica J. Planta, 2020, 252 (2), 30.
11 Gao X F, Jiang L. Nature, 2004, 432 (7013), 36.
12 Neumann D, Woermann D. Naturwissenschaften, 2009, 96(8), 933.
13 Wang D H, Sun Q Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55.
14 Li Z W, Qi B H, Liu C S, et al. China Surface Engineering, 2020, 33(5), 10 (in Chinese).
李志文, 齐博浩, 刘长松,等. 中国表面工程, 2020, 33(5), 10.
15 Bartell F E, Shepard J W. Journal of Physical Chemistry, 1953, 57(2), 211.
16 Feng L, Zhang Y N, Xi J M, et al. Langmuir, 2008, 24(8), 4114.
17 Koch B M L, Amirfazli A, Elliott A W. Journal of Physical Chemistry C, 2014, 118(32), 18554.
18 Magin C M, Finlay J A, Clay G, et al. Biomacromolecules, 2011, 12(4), 915.
19 RodrIguez-Valverde M A, Ruiz-Cabello F J M, Gea-Jodar P M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365(1-3),21.
20 Bartolo D, Bouamrirene F, Verneuil, E, et al. Europhysics Letters, 2006, 74(2), 299.
21 Li Q, Zhou P, Yan H J. Langmuir, 2016, 32 (37), 9389.
22 Kuchma A E, Shchekin A K, Esipova N E, et al. Colloid Journal, 2017, 79(3), 353.
23 Vafaei S, Podowski M A. Advances in Colloid and Interface Science, 2005, 113(2-3),133.
24 Fathi A R, Eshtehardi P, Meie B. British Journal of Anaesthesia, 2009, 102(5), 588.
25 Sloan T. Journal of Neurosurgical Anesthesiology, 2010, 22 (1), 59.
26 Chaurasia A S, Sajjadi S. Lab on a Chip, 2019, 19 (5),851.
27 Wang G C, Nguyen A V, Mitra S, et al. Separation and Purification Technology, 2016, 170,155.
28 Qu X F, Wang Y Z, Zhu X, et al. International Journal of Hydrogen Energy, 2011, 36(21), 14111.
29 Dorrer C and Ruehe J. Langmuir, 2012, 28(42), 14968.
30 Mittal K L. Advances in Contact Angle, Wettability and Adhesion, Hopewell Junction: Scrivener Publishing, UK, 2015, pp. 149.
31 Sarkar S, Roy T, Roy A, et al. Journal of Colloid and Interface Science, 2021, 581, 690.
32 Ketola A E, Xiang W C, Hjelt T M, et al. Langmuir, 2020, 36(26), 7296.
33 Moraila C L, Ruiz-Cabello F J M, Cabrerizo-Vilchez M, et al. Journal of Colloid and Interface Science, 2019, 539, 448.
34 Liu J, Holuszko M, Mastalerz M. International Journal of Coal Geology, 2017, 178, 74.
35 Kim S, Bowen R A R, Zare R N. ACS Applied Materials and interfaces, 2015, 7(3), 1925.
36 Baek Y B, Kang J, Theato P, et al. Desalination, 2012, 303, 23.
37 Ruiz-Cabello F J M, Rodriguez-Valverde M A, Cabrerizo-Vilchez M A. Journal of Adhesion Science and Technology, 2011, 25(16), 2039.
38 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
39 Wenzel R N. Industrial and Engineering Chemistry, 1936, 28(8), 988.
40 Cassie A B D, Bzxter S. Transactions of the Faraday Society, 1944, 40, 546.
41 Rayleigh L. Philosophical Magazine, 1890, 30(186), 386.
42 Jung Y C, Bhushan B. Nanotechnology, 2006, 17(19), 4970.
43 Anderson W G. Journal of Petroleum Technology, 1986, 38(11),1246.
44 Xiao Y H, Zheng J, He Y M, et al. China Surface Engineering, 2019, 32(6), 150 (in Chinese).
肖易航, 郑军, 何勇明,等.中国表面工程, 2019, 32(6), 150.
45 Adam N K, Jessop G. Journal of the Chemical Society Transactions, 1925, 127: 1863.
46 Yarnold G D. Proceedings of the Physical Society, 1938, 50(4), 540.
47 Morra M, Occhiello E, Garbassi F. Advances in Colloid and Interface Science, 1990, 32, 79.
48 Donescu D, Vuluga Z, Radovici C, et al. Materiale plastice, 2008, 45(4), 305.
49 Wang W. The research of preparation and modification of nano silicon dioxide used for oil displacement. Master's Thesis, China University of Petroleum (East China), China, 2015 (in Chinese).
王维. 驱油用纳米二氧化硅的制备及改性研究. 硕士学位论文, 中国石油大学(华东),2015.
50 Li R C, Du T J, Cong W W, et al. Materials Reports, 2021, 35(2), 02199 (in Chinese).
李锐超, 桂泰江, 丛巍巍, 等. 材料导报, 2021, 35(2), 02199.
51 Sun M H, Luo C X, Xu L P, et al. Langmuir, 2005, 21(19), 8978.
52 Mukhopadhyay R D, Vedhanarayanan B, Ajayaghosh A. Angewandte Chemie-International Edition, 2017, 56(50), 16018.
53 Oner D, Mccarthy T J. Langmuir, 2000, 16 (20), 7777.
54 Hosoda N, Gorb S N. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1745), 4236.
55 Ling W Y L, Ng T W, Neild A. Langmuir, 2011, 27(23), 13978.
[1] 王力, 王海斗, 底月兰, 何东昱, 黄艳斐. 电子束辐照改善材料表面润湿性能的研究进展[J]. 材料导报, 2023, 37(23): 22080136-9.
[2] 韩照, 张云升, 乔宏霞, 冯琼, 薛翠真, 尚明刚. 基于CT扫描及图像处理技术的机制砂形貌研究[J]. 材料导报, 2023, 37(19): 22060032-6.
[3] 郭明荣, 鲁艳军, 陈润华. 石英玻璃微流道超声振动磨削加工及流动阻力特性研究[J]. 材料导报, 2023, 37(17): 22040004-7.
[4] 宋绍意, 黎学明, 杨文静, 何苗, 倪婕, 简燕, 曾旭钟. 可催化高氯酸钠热分解的三维微纳多孔铜的合成[J]. 材料导报, 2023, 37(12): 21080141-6.
[5] 焦宇鸿, 朱建锋, 王芬. SiC/Al基复合材料界面调控[J]. 材料导报, 2022, 36(9): 20070174-13.
[6] 王冕, 张全超, 敖海勇, 万怡灶. 形状记忆聚合物表面响应性润湿性研究进展[J]. 材料导报, 2022, 36(21): 20090319-9.
[7] 张月, 孙鹏飞, 吕平, 黄微波, 车凯圆, 王荣珍. 自然曝晒条件下聚脲涂层的耐老化性能研究[J]. 材料导报, 2022, 36(2): 21010092-8.
[8] 乔敏, 单广程, 高南箫, 陈健, 吴井志, 朱伯淞, 冉千平. 混凝土气泡调控型表面活性剂的研究进展[J]. 材料导报, 2022, 36(18): 20090232-7.
[9] 隋然, 刘禄, 林巧力. 冷金属过渡条件下4043铝合金分别在镀锌钢和镀锡钢表面的润湿行为[J]. 材料导报, 2022, 36(15): 21070041-5.
[10] 董瑞鑫, 申向东, 薛慧君, 刘倩, 维利思, 慕儒. 风积沙混凝土的气泡参数对其强度的影响[J]. 材料导报, 2022, 36(12): 21010006-5.
[11] 周强, 田业冰, 于宏林, 范增华, 钱乘, 孙志光. 超粗糙氧化锆复合陶瓷磁性剪切增稠光整加工特性[J]. 材料导报, 2021, 35(z2): 97-100.
[12] 罗祥, 王玲, 王振地. 混凝土中气泡的产生与发展:机理和影响因素[J]. 材料导报, 2021, 35(z2): 213-217.
[13] 唐宏, 董兵海, 艾虎. 透明超疏水涂层制备技术研究进展[J]. 材料导报, 2021, 35(Z1): 156-159.
[14] 梁雷, 王彦玲, 刘斌, 李永飞, 汤龙皓. 含氟聚合物乳液的制备方法及在固液界面的应用[J]. 材料导报, 2021, 35(Z1): 586-593.
[15] 金贺荣, 张钊瑞, 韩民峰, 井士涛, 赵丁选. 表面粗糙度对热轧不锈钢复合板界面质量的影响[J]. 材料导报, 2021, 35(8): 8151-8156.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed