Abstract: At present, the effects of wettability and roughness on bubble wetting behaviors are not clear. To systematically study the bubble wetting behaviors, bubble apparent contact angle and contact angle hysteresis experiments were conducted. And qualitative relationships between Young's contact angle, surface roughness and bubble wetting behaviors from strongly hydrophilicity to hydrophobicity on three solid surfaces with different surface roughness (S1 r=1.15, S2 r=1.64, S3 r=1.64). Results show that wetting behaviors of bubble follow the friction force theory. With the increase of roughness, the apparent contact angle and contact angle hysteresis decrease. Distorted apparent contact angles occur in hydrophilic states resulted from buoyancy and hydrostatic pressure. With increasing of Young's contact angle, the apparent contact angle and contact angle hysteresis keep unchanged under hydrophilic states. However, in neutrally-wet states, apparent contact angle starts following the Cassie-Baxter equation, contact angle hysteresis also significantly increases on the S1 and S2, and increasing rate of S2 is less than that of S1. Contact angle hysteresis of S3 keeps unchanged with different wetting states. When wettability reaches neutrally-wet state, bubble apparent contact angles are equal to drop receding angles, drop apparent contact angles are equal to bubble advancing angles for S1, while these phenomena do not present on more rough surfaces (S2, S3).
通讯作者:
* 郑军,成都理工大学能源学院副教授,博士研究生导师。2003年、2007年、2011年获成都理工大学工学学士、工学硕士,工学博士学位。目前主要从事油气储层物性测试及建模技术等方面的研究工作。发表论文20余篇,包括Journal of Petroleum Science and Engineering、Colloids and Surfaces A、International Journal of Multiphase Flow等学术期刊,获授权发明专利10余项。61433095@qq.com
作者简介: 肖易航,成都理工大学能源学院讲师。2016年、2019年、2023年分别获成都理工大学工学学士、工学硕士、工学博士学位。目前主要从事多相渗流机理及表面润湿行为等方面的研究工作。发表论文19篇,包括Colloids and Surfaces A、Geoenergy Science and Engineering等学术期刊,获授权发明专利5项。
引用本文:
肖易航, 郑军, 何勇明. 气泡在粗糙表面的润湿行为研究[J]. 材料导报, 2023, 37(23): 22030060-7.
XIAO Yihang, ZHENG Jun, HE Yongming. Investigation of Wetting Behaviors for Air Bubble on Rough Surfaces. Materials Reports, 2023, 37(23): 22030060-7.
1 Sun X X, Yao Y B, Liu D M,et al. International Journal of Coal Geology, 2018, 188, 38. 2 Guo J C, Tao L, Chen C, et al. Acta Petrolei Sinica, 2020, 41(2), 216 (in Chinese). 郭建春, 陶亮, 陈迟,等. 石油学报, 2020, 41(2), 216. 3 Jeon D, Park J, Shin C, et al. Science Advance, 2020, 6(15), 3944. 4 Yu F W, Gao Z D, Zhu W H, et al. Petroleum Exploration and Development, 2021, 48(5), 1004 (in Chinese). 于馥玮, 高振东, 朱文浩,等. 石油勘探与开发, 2021, 48(5), 1004. 5 Maiolo D, Federici S, Ravelli L, et al. Journal of Colloid and Interface Science, 2013, 402, 334. 6 Jmoas S J, Stieg A Z, Richardson W, et al. Journal of Physical Chemistry Letters, 2015, 6(3), 388. 7 Hosoda N, Gorb S N. Proceedings Biological Sciences, 2012, 279(1745), 4236. 8 Jiang Y L, Duan J L, Jiang T T, et al. Micron, 2021, 146, 103073. 9 Wang J M, Zheng Y M, Nie F Q, et al. Langmuir, 2009, 25(24), 14129. 10 Jura-Morawiec J, Marcinkiewica J. Planta, 2020, 252 (2), 30. 11 Gao X F, Jiang L. Nature, 2004, 432 (7013), 36. 12 Neumann D, Woermann D. Naturwissenschaften, 2009, 96(8), 933. 13 Wang D H, Sun Q Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55. 14 Li Z W, Qi B H, Liu C S, et al. China Surface Engineering, 2020, 33(5), 10 (in Chinese). 李志文, 齐博浩, 刘长松,等. 中国表面工程, 2020, 33(5), 10. 15 Bartell F E, Shepard J W. Journal of Physical Chemistry, 1953, 57(2), 211. 16 Feng L, Zhang Y N, Xi J M, et al. Langmuir, 2008, 24(8), 4114. 17 Koch B M L, Amirfazli A, Elliott A W. Journal of Physical Chemistry C, 2014, 118(32), 18554. 18 Magin C M, Finlay J A, Clay G, et al. Biomacromolecules, 2011, 12(4), 915. 19 RodrIguez-Valverde M A, Ruiz-Cabello F J M, Gea-Jodar P M, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010, 365(1-3),21. 20 Bartolo D, Bouamrirene F, Verneuil, E, et al. Europhysics Letters, 2006, 74(2), 299. 21 Li Q, Zhou P, Yan H J. Langmuir, 2016, 32 (37), 9389. 22 Kuchma A E, Shchekin A K, Esipova N E, et al. Colloid Journal, 2017, 79(3), 353. 23 Vafaei S, Podowski M A. Advances in Colloid and Interface Science, 2005, 113(2-3),133. 24 Fathi A R, Eshtehardi P, Meie B. British Journal of Anaesthesia, 2009, 102(5), 588. 25 Sloan T. Journal of Neurosurgical Anesthesiology, 2010, 22 (1), 59. 26 Chaurasia A S, Sajjadi S. Lab on a Chip, 2019, 19 (5),851. 27 Wang G C, Nguyen A V, Mitra S, et al. Separation and Purification Technology, 2016, 170,155. 28 Qu X F, Wang Y Z, Zhu X, et al. International Journal of Hydrogen Energy, 2011, 36(21), 14111. 29 Dorrer C and Ruehe J. Langmuir, 2012, 28(42), 14968. 30 Mittal K L. Advances in Contact Angle, Wettability and Adhesion, Hopewell Junction: Scrivener Publishing, UK, 2015, pp. 149. 31 Sarkar S, Roy T, Roy A, et al. Journal of Colloid and Interface Science, 2021, 581, 690. 32 Ketola A E, Xiang W C, Hjelt T M, et al. Langmuir, 2020, 36(26), 7296. 33 Moraila C L, Ruiz-Cabello F J M, Cabrerizo-Vilchez M, et al. Journal of Colloid and Interface Science, 2019, 539, 448. 34 Liu J, Holuszko M, Mastalerz M. International Journal of Coal Geology, 2017, 178, 74. 35 Kim S, Bowen R A R, Zare R N. ACS Applied Materials and interfaces, 2015, 7(3), 1925. 36 Baek Y B, Kang J, Theato P, et al. Desalination, 2012, 303, 23. 37 Ruiz-Cabello F J M, Rodriguez-Valverde M A, Cabrerizo-Vilchez M A. Journal of Adhesion Science and Technology, 2011, 25(16), 2039. 38 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65. 39 Wenzel R N. Industrial and Engineering Chemistry, 1936, 28(8), 988. 40 Cassie A B D, Bzxter S. Transactions of the Faraday Society, 1944, 40, 546. 41 Rayleigh L. Philosophical Magazine, 1890, 30(186), 386. 42 Jung Y C, Bhushan B. Nanotechnology, 2006, 17(19), 4970. 43 Anderson W G. Journal of Petroleum Technology, 1986, 38(11),1246. 44 Xiao Y H, Zheng J, He Y M, et al. China Surface Engineering, 2019, 32(6), 150 (in Chinese). 肖易航, 郑军, 何勇明,等.中国表面工程, 2019, 32(6), 150. 45 Adam N K, Jessop G. Journal of the Chemical Society Transactions, 1925, 127: 1863. 46 Yarnold G D. Proceedings of the Physical Society, 1938, 50(4), 540. 47 Morra M, Occhiello E, Garbassi F. Advances in Colloid and Interface Science, 1990, 32, 79. 48 Donescu D, Vuluga Z, Radovici C, et al. Materiale plastice, 2008, 45(4), 305. 49 Wang W. The research of preparation and modification of nano silicon dioxide used for oil displacement. Master's Thesis, China University of Petroleum (East China), China, 2015 (in Chinese). 王维. 驱油用纳米二氧化硅的制备及改性研究. 硕士学位论文, 中国石油大学(华东),2015. 50 Li R C, Du T J, Cong W W, et al. Materials Reports, 2021, 35(2), 02199 (in Chinese). 李锐超, 桂泰江, 丛巍巍, 等. 材料导报, 2021, 35(2), 02199. 51 Sun M H, Luo C X, Xu L P, et al. Langmuir, 2005, 21(19), 8978. 52 Mukhopadhyay R D, Vedhanarayanan B, Ajayaghosh A. Angewandte Chemie-International Edition, 2017, 56(50), 16018. 53 Oner D, Mccarthy T J. Langmuir, 2000, 16 (20), 7777. 54 Hosoda N, Gorb S N. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1745), 4236. 55 Ling W Y L, Ng T W, Neild A. Langmuir, 2011, 27(23), 13978.