Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23020080-7    https://doi.org/10.11896/cldb.23020080
  高分子与聚合物基复合材料 |
PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化
高浩, 魏中华, 邓佳, 陈涛, 赵海利*
昆明理工大学化学工程学院, 昆明 650504
The Fabrication of Polystyrene Nanoparticle Microarrays Through the Micropatterned PEGMA Brush Induced Assembly
GAO Hao, WEI Zhonghua, DENG Jia, CHEN Tao, ZHAO Haili*
Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650504, China
下载:  全 文 ( PDF ) ( 9495KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于光引发原子转移自由基聚合(ATRP)反应,在疏水性引发剂表面制备亲水性聚乙二醇甲基丙烯酸酯(PEGMA)聚合物刷微图案,以PEGMA聚合物刷图案化表面为模板,借助亲疏水区域间表面能的差异使聚苯乙烯(PS)纳米颗粒在亲水区域精准组装制备纳米颗粒微阵列。采用X射线光电子能谱仪(XPS)与拉曼光谱仪(Raman)对各阶段基体表面化学组分进行表征,结果表明,聚多巴胺/3-(三甲氧基硅烷基)丙基2-溴-2-甲基丙酸酯(PDA/SiBr)复合涂层、PEGMA聚合物刷以及PS纳米颗粒微阵列被成功制备。采用扫描电子显微镜(SEM)和光学显微镜对PEGMA聚合物刷图案化表面及PS纳米颗粒阵列化表面进行观察,结果表明PS纳米颗粒在PEGMA聚合物刷微图案区域选择性组装。研究了PS纳米颗粒微阵列表面BSA蛋白吸附行为,荧光图像结果表明PS纳米颗粒在PEGMA聚合物刷微图案表面组装后可以有效促进BSA蛋白在该区域的黏附。相关研究工作拓展了图案化聚合物刷在纳米颗粒微阵列制备中的应用,为纳米颗粒在高质量生物微阵列、生物探针等领域的应用提供了技术支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高浩
魏中华
邓佳
陈涛
赵海利
关键词:  聚乙二醇甲基丙烯酸酯(PEGMA)刷微图案  亲疏水反差特性  聚苯乙烯(PS)纳米颗粒  微阵列  蛋白吸附    
Abstract: Hydrophilic poly(ethylene glycol) methacrylate (PEGMA) brush micropatterns were prepared on the hydrophobic initiator surface based on the photoinitiated atom transfer radical polymerization (ATRP) reaction. With PEGMA brushes micropatterned substrate acted as a template, the precise assembly of polystyrene (PS) nanoparticles in the hydrophilic region was achieved by utilizing the surface energy difference between hydrophilic and hydrophobic regions, enabling the fabrication of nanoparticle microarrays. X-ray photoelectron spectroscopy (XPS) tests revealed that the covalent immobilization of 3-(Trimethoxysilyl) propyl 2-bromo-2-methylpropanoate (SiBr) initiator on the polydopamine (PDA) surface was achieved. Raman spectroscopy tests indicated the growth of PEGMA brushes on the initiator surface and the assembly of PS nanoparticles on the PEGMA brushes surface. Optical microscopy and scanning electron microscopy (SEM) characterizations showed the selective assembly of PS nanoparticles on the PEGMA brush regions, leading to the successful fabrication of nanoparticle microarrays. Fluorescein thiocyanate-labeled bovine serum protein (FITC-BSA) was applied to detect the protein adsorption behavior of PS nanoparticles, and the results demonstrated the PS nanoparticles could effectively promote the adhesion of BSA protein on the antifouling PEGMA brush region. The presented fabrication technique shows great potential in the fabrication of nanoparticle microarrays with complex structures and provides technical support for the application of nanoparticles in high-throughput bio-microarrays and bioprobes.
Key words:  poly (ethylene glycol) methacrylate (PEGMA) brush micropattern    hydrophilic-hydrophobic contrast characteristic    polystyrene (PS) nanoparticle    microarray    protein adsorption
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TB303  
基金资助: 国家自然科学基金(52103262)
通讯作者:  * 赵海利,昆明理工大学化学与工程学院讲师、硕士研究生导师。2013年华东理工大学材料成型及控制工程专业本科毕业,2013—2020年在华东理工大学动力工程及工程热物理专业硕博连读,2020年6月份获得工学博士学位,2020年10月入职昆明理工大学化学工程学院。目前主要从事高分子材料、微纳结构制备(3D打印)及功能化等方面的研究工作,在Lab on a Chip、Applied Surface Science等杂志发表多篇学术论文。zhl419wsm@163.com   
作者简介:  高浩,2016—2020年于榆林学院就读过程装备与控制工程专业,2020年6月获得工学学士学位,现为昆明理工大学化学工程学院硕士研究生。目前主要进行高分子材料、微纳结构制备(3D打印)及功能化研究。2020—2023年参与昆明理工大学人才培养项目。
引用本文:    
高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
GAO Hao, WEI Zhonghua, DENG Jia, CHEN Tao, ZHAO Haili. The Fabrication of Polystyrene Nanoparticle Microarrays Through the Micropatterned PEGMA Brush Induced Assembly. Materials Reports, 2024, 38(14): 23020080-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020080  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23020080
1 Peng J, Li J, Xu W, et al. Analytical Chemistry, 2018, 90(3), 1628.
2 Barad H N, Kwon H, Alarcon-Correa M, et al. ACS Nano, 2021, 15(4), 5861.
3 Morsi R E, Alsabagh A M, Nasr S A, et al. International Journal of Biological Macromolecules, 2017, 97, 264.
4 Sim X M, Wang C G, Liu X, et al. ACS Applied Materials & Interfaces, 2020, 12(25), 28711.
5 许荔, 江晓禹. 材料科学与工程学报, 2005, 23(6), 933.
6 Li H, Xu S, Wang S, et al. Journal of Water Process Engineering, 2020, 38.
7 Cepriá G, Pardo J, Lopez A, et al. Sensors and Actuators, B: Chemical, 2016, 230, 25.
8 Williams R M, Shah J, Tian H S, et al. Hypertension, 2018, 71(1), 87.
9 Kaliannagounder V K, Raj N P M J, Unnithan A R, et al. Nano Energy, 2021, 85,105901.
10 Deng D, Zhang D, Li Y, et al. Biosensors and Bioelectronics, 2013, 49, 216.
11 Gagino M, Katsikis G, Olcum S, et al. ACS Sensors, 2020, 5(4), 1230.
12 Bog U, de Los Santos Pereira A, Mueller S L, et al. ACS Applied Mate-rials & Interfaces, 2017, 9(13), 12109.
13 Azzaroni O. Journal of Polymer Science Part A: Polymer Chemistry, 2012, 50(16), 3225.
14 Suetin N V, Evlashin S A, Egorov A V, et al. Physical Chemistry Chemical Physics, 2016, 18(17), 12344.
15 Shen S J, Lee D, Wu Y C, et al. Materials (Basel), 2021, 14(2), 274.
16 Wang Y, Zhang K, Tian T, et al. ACS Applied Materials & Interfaces, 2021, 13(4), 4886.
17 Wang C, Yap F L, Zhang Y. Colloids and Surfaces B: Biointerfaces, 2005, 46(4), 255.
18 Utgenannt A, Maspero R, Fortini A, et al. ACS Nano, 2016, 10(2), 2232.
19 Pang J, Theodorou I G, Centeno A, et al. Journal of Materials Chemistry C, 2017, 5(4), 917.
20 Galloway J M, Bramble J P, Rawlings A E, et al. Small, 2012, 8(2), 204.
21 Eklof-Osterberg J, Lofgren J, Erhart P, et al. Journal of Physical Chemistry C, 2020, 124(8), 4660.
22 Jiang C, Chan P H, Leung C W, et al. Journal of Physical Chemistry C, 2017, 121(40), 22508.
23 Lim D, Noh S, Song Y. Journal of Materials Research and Technology, 2021, 14, 3150.
24 Pradhan S S, Saha S. Advances in Colloid and Interface Science, 2022, 300, 102580.
25 吴家宇, 李丹, 康龙, 等. 材料导报, 2018, 32(4), 549.
26 Mensink L I S, Snoeijer J H, de Beer S. Macromolecules, 2019, 52(5), 2015.
27 Ma S, Lin L, Wang Q, et al. ACS Applied Materials & Interfaces, 2019, 11(31), 28527.
28 Ma K, Ma Y L, Zhao H L, et al. Acta Polymerica Sinica, 2018(5), 571(in Chinese).
马康, 马玉录, 赵海利, 等. 高分子学报, 2018(5), 571.
29 Rella S, Mazzotta E, Caroli A, et al. Applied Surface Science, 2018, 447, 31.
30 Lin C, Gong F, Yang Z, et al. Polymer Testing, 2018, 68, 126.
31 Xia H, Yang R, Li H M, et al. Journal of Yili Normal University(Natural Science Edition), 2016, 10(4), 19(in Chinese).
夏欢, 杨榕, 李红梅, 等. 伊犁师范学院学报: 自然科学版, 2016, 10(4), 19.
32 Cheng Y W, Lin Y T, Liu K H, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 642, 128719.
33 Javadi A, Dowlati S, Shourni S, et al. Advances in Colloid and Interface Science, 2022, 301, 102601.
[1] 赵泽芳, 何青松, 张昊, 于敏, 陆吉, 田成博, 潘辉. 基于PDMS的蘑菇状仿生黏附微阵列新型制造方法[J]. 材料导报, 2023, 37(5): 21070247-6.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed