Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 23010027-5    https://doi.org/10.11896/cldb.23010027
  金属与金属基复合材料 |
料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律
谢雨秋1,2, 郭伟1,2,*
1 武汉理工大学材料复合新技术国家重点实验室,武汉 430070
2 佛山仙湖实验室,广东 佛山 528200
Influence of Slurry I/C Ratio on Oxygen Transfer Resistance of PEMFC Alloy Catalyst
XIE Yuqiu1,2, GUO Wei1,2,*
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing,Wuhan University of Technology, Wuhan 430070, China
2 Foshan Xianhu Laboratory, Foshan 528200, Guangdong, China
下载:  全 文 ( PDF ) ( 4042KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 氧气传输阻力对燃料电池性能有着重要的影响,而该阻力的大小也与料浆配方的I/C比和催化剂种类密切相关。本工作研究了不同I/C比对不同型号低载量合金催化剂性能的影响,使用了极限电流法对燃料电池的氧传质阻力变化规律进行分析。测试结果表明,虽然合金催化剂的电催化活性高于纯铂催化剂(PtCo/C>PtRu/C>Pt/C),但是I/C比变化对电池性能的影响更为关键:PtRu/C催化剂极限电流密度最低,氧气传输能力受到I/C比的影响最严重,PtCo/C次之,Pt/C催化剂的氧气传输能力受到的影响最小。与之对应的,三种催化剂的电池性能依次为Pt/C≈PtCo/C>PtRu/C。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
谢雨秋
郭伟
关键词:  I/C比  合金催化剂  氧传质阻力  燃料电池    
Abstract: Oxygen transport resistance has an important effect on fuel cell performance, and the magnitude of this resistance is also closely related to the I/C ratio of the slurry formulation and the catalyst type. In this work, the limiting current method was used to analyze the variation pattern of oxygen transport resistance of fuel cells by studying the effect of different I/C ratios on the performance of different types of low loading alloy catalysts. The test results show that although the electrocatalytic activity of alloy catalysts is higher than that of pure Pt catalysts (PtCo/C > PtRu/C > Pt/C), the I/C ratio variation has a more critical effect on the cell performance: PtRu/C catalysts have the lowest limit current density and the oxygen transport capacity is most severely affected by the I/C ratio, followed by PtCo/C, and Pt/C catalysts have the least affected. Correspondingly, the cell performance of the three catalysts is Pt/C≈PtCo/C>PtRu/C in order.
Key words:  I/C ratio    alloy catalyst    oxygen transport resistance    fuel cell
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TM911.42  
基金资助: 国家自然科学基金(21975192);国防基础科研(JCKY2020206B507);先进能源科学与技术广东省实验室佛山分中心(佛山仙湖实验室)开放基金(XHD2022-002)
通讯作者:  * 郭伟,武汉理工大学材料复合新技术国家重点实验室副研究员、博士研究生导师。2016年德国卡尔斯鲁厄理工学院材料化学专业博士毕业后到武汉理工大学工作至今。目前主要从事质子交换膜燃料电池及其关键材料方面的研究工作。发表论文30余篇,包括Applied Energy、Nano Scale、ACS Applied Materials & Interfaces等。guowei2016@whut.edu.cn   
作者简介:  谢雨秋,武汉理工大学硕士研究生。2020年7月于湖北工业大学获得工学学士学位。目前主要研究领域为I/C比对不同低载量合金催化剂的氧传质阻力影响。
引用本文:    
谢雨秋, 郭伟. 料浆I/C比对PEMFC合金催化剂氧传质阻力的影响规律[J]. 材料导报, 2024, 38(14): 23010027-5.
XIE Yuqiu, GUO Wei. Influence of Slurry I/C Ratio on Oxygen Transfer Resistance of PEMFC Alloy Catalyst. Materials Reports, 2024, 38(14): 23010027-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23010027  或          http://www.mater-rep.com/CN/Y2024/V38/I14/23010027
1 Jia Q H, Guo C C, Wang R J, et al. Journal of Chongqing University of Technology(Natural Science), 2023,37(8),300(in Chinese).
贾秋红,郭超超,汪如君,等.重庆理工大学学报(自然科学),2023,37(8),300.
2 Wang C, Wang S, Zhang J, et al. Progress in Chemistry, 2015, 27(2-3), 310.
3 Wei C Q, Zhang J S, Wan Q B, et al. Journal of Chongqing University of Technology(Natural Science), 2023,37(6),325(in Chinese).
卫超强,张君善,宛泉伯,等.重庆理工大学学报(自然科学),2023,37(6),325.
4 Fofana D, Natarajan S K, Hamelin J, et al. Energy, 2014, 64, 398.
5 Qi Z G, Kaufman A. Journal of Power Sources, 2003, 113(1), 37.
6 Passalacqua E, Lufrano F, Squadrito G, et al. Electrochimica Acta, 2001, 46(6), 799.
7 Makharia R, Subramanian N, Kumaraguru S,et al. Hydrogen-Air Performance and Degradation of Carbon-Supported Pt-alloy Catalyst Measured at High Current Density in Proton Exchange Membrane (PEM) Fuel Cells. Fuel Cell Seminar and Exhibition,2008.
8 Nonoyama N, Okazaki S, Weber A Z, et al. Journal of the Electrochemical Society, 2011, 4(51), 416.
9 Owejan J P, Owejan J E, Gu W. Journal of the Electrochemical Society, 2013, 160(8), F824.
10 Khandavalli S, Park J H, Kariuki N N, et al. ACS Applied Materials & Interfaces, 2018, 10(50), 43610.
11 Morgan R D, Haan J L, Masel R I. Journal of Power Sources, 2010, 195(19), 6405.
12 Uemura S, Yoshida T, Koga M. et al. Journal of the Electrochemical So-ciety, 2019, 166(2), F89.
13 Takahashi S, Shimanuki J, Mashio T, et al. Electrochimica Acta, 2017, 224, 178.
14 Berlinger S, A, McCloskey, B D, Weber A Z. In: Understanding Binary Interactions in Fuel-Cell Catalyst-Layer Inks, Symposium on Polymer Electrolyte Fuel Cells (PEFC) Held During the 232nd Meeting of the Electrochemical-Society.National Harbor, MD, 2017, pp. 309.
15 Beuscher U. Journal of the Electrochemical Society, 2006, 153(9), A1788.
16 Kongkanand A, Mathias M F. Journal of Physical Chemistry Letters, 2016, 7(7), 1127.
17 Hong K, Zhu K, Liu S C, et al. Materials Reports, 2022, 36(20), 124(in Chinese).
洪亢, 朱凯, 刘声楚, 等. 材料导报, 2022, 36(20), 124.
[1] 刘守一, 望宇皓, 刘莉莉, 欧阳云祥, 李娜, 胡朝霞, 陈守文. 石墨相氮化碳在聚合物电解质膜中的研究进展[J]. 材料导报, 2024, 38(6): 23030250-7.
[2] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[3] 孙墨杰, 王洋, 刘建军, 张士元, 周静, 张庭. 微流控系统制备金属纳米催化剂研究进展[J]. 材料导报, 2023, 37(7): 21040293-9.
[4] 赵悦, 李德念, 阳济章, 熊传溪, 袁浩然, 陈勇. 中药渣生物炭活化制备碳基电催化剂及其氧还原反应催化性能研究[J]. 材料导报, 2023, 37(2): 21070205-7.
[5] 陈常乐, 皮小虎, 缪远玲, 孙绪绪, 詹福如, 王奇, 欧思聪. 等离子体制备的具有优异甲醇氧化电催化活性的Pt-Ni/N掺杂还原氧化石墨烯[J]. 材料导报, 2023, 37(1): 21120093-11.
[6] 逄芳钊, 姚陈思琦, 李安金, 赵盘巢, 李继刚, 易伟, 何建云, 蒋云波, 陈义武. 用于氧还原反应的PtNi合金催化剂研究进展[J]. 材料导报, 2023, 37(1): 20070194-9.
[7] 陈丹, 宋琛, 杜柯, 郭宇, 刘志义, 刘太楷, 刘敏. 沉积温度对等离子喷涂金属支撑型固体氧化物燃料电池结构及电化学性能的影响[J]. 材料导报, 2022, 36(Z1): 22030119-5.
[8] 刘小伟, 孙宁, 刘湘林, 金芳军. 基于LnBaCo2O5+δ双钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(8): 20080292-6.
[9] 刘佳琪, 杨庆浩. 氧还原电催化剂的研究进展[J]. 材料导报, 2022, 36(24): 20110226-6.
[10] 冯磊, 舒文祥, 文陈, 崔庆新, 白晶莹, 李心歆. 火星原位资源可用途径分析[J]. 材料导报, 2022, 36(22): 22040408-7.
[11] 刘峥嵘, 杨甲铭, 付磊, 周礼凯, 吴可, 李晴皓, 王璇, 周峻, 吴锴. SrTiO3基可逆固体氧化物电池电极材料的研究进展[J]. 材料导报, 2022, 36(21): 21040196-8.
[12] 刘金伟, 畅丽媛, 王如志. 磷掺杂对碳载铂催化剂氧还原催化性能的影响[J]. 材料导报, 2022, 36(21): 21040096-6.
[13] 洪亢, 朱凯, 刘声楚, 李赏, 潘牧. 电化学腐蚀对气体扩散层氧传质的影响[J]. 材料导报, 2022, 36(20): 21030161-5.
[14] 余剑峰, 罗凌虹, 程亮, 徐序, 王乐莹, 余永志, 夏昌奎. 钙钛矿结构SOFC阴极材料的研究进展[J]. 材料导报, 2022, 36(2): 20030066-11.
[15] 任雨峰, 栾伟玲, 姜滔. 基于金属有机框架材料的氧还原催化剂研究进展[J]. 材料导报, 2022, 36(19): 20080238-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed