Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 22120220-8    https://doi.org/10.11896/cldb.22120220
  高分子与聚合物基复合材料 |
废弃塑料热解技术碳足迹研究进展
周荷雯1,2,†, 姚敦雪1,†, 杨晴1,*
1 华中科技大学能源与动力工程学院, 武汉 430074
2 山东大学高等技术研究院, 济南 250199
Research Progress on Carbon Footprint of Waste Plastic Pyrolysis Technology
ZHOU Hewen1,2,†, YAO Dunxue1,†, YANG Qing1,*
1 School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Institute of Advanced Technology, Shandong University, Jinan 250199, China
下载:  全 文 ( PDF ) ( 3145KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 碳达峰、碳中和时代背景决定低碳化利用是废弃塑料处理行业的主要发展趋势。热解可以将废弃塑料中的碳氢化合物转化为高附加值的含碳产物,避免废弃物焚烧、填埋造成的温室气体排放,同时实现高值化利用,助力于构建绿色低碳循环发展工业体系。本文以先进的废弃塑料热解技术为对象,对其生命周期碳足迹研究进展进行了综述。首先从碳元素迁移转化的视角介绍了废弃塑料的原料特性和热解产物特性,进一步从碳元素生命周期视角总结了目前国内外废弃塑料制备固体碳产物的热解固碳思路;接着介绍了废弃塑料热解系统生命周期碳足迹研究方法和步骤,阐述了其碳足迹评价指标及内涵;进而围绕不同废弃塑料热解技术,从系统固碳角度归纳并综述了废弃塑料热解系统生命周期碳足迹研究现状,重点论述了不同研究因系统边界和数据来源不一致导致其碳足迹结果难以进行比较等问题,指出目前废弃塑料热解系统生命周期碳足迹研究需要通过构建多尺度模型,深入探究不同尺度数据之间的相互关系,增加数据透明度,清晰描述不同尺度的计算结果,从而使得研究结果可对比并具有广泛的参考价值;最后根据以上研究对废弃塑料生命周期研究的未来发展方向进行展望,为后续废弃塑料热解产业相关发展提供理论参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周荷雯
姚敦雪
杨晴
关键词:  废弃塑料  热解  碳足迹  生命周期评价    
Abstract: In the context of carbon peak and carbon neutrality, low-carbon utilization is the main development trend of the waste plastic processing industry. Pyrolysis can convert hydrocarbons in waste plastics into high-value-added carbon-containing products, avoid greenhouse gas emissions caused by waste incineration and landfill, and realize high-value utilization, helping to build a green and low-carbon recycling industrial system. Based on advanced pyrolysis technologies, this paper reviews the progress of research on the life cycle carbon footprint of waste plastics. Firstly, this paper introduces the characteristics of waste plastic raw materials and pyrolysis products from the perspective of carbon transfer and transformation, and then summarizes the current domestic and international pyrolysis carbon sequestration ideas for the preparation of solid carbon products from waste plastics from the perspective of carbon life cycle. By introducing the methodology and steps of the life cycle carbon footprint of the waste plastic pyrolysis system, expounding on the carbon footprint assessment index and connotation. The research status of the life cycle carbon footprint of the waste plastic pyrolysis system is summarized and reviewed from the perspective of carbon sequestration by different waste plastic pyrolysis technologies, focusing on the difficulty in comparing the carbon footprint results of different studies due to inconsistent system boundaries and data sources, and emphasizing that the current life cycle carbon footprint research of the waste plastic pyrolysis system needs to build a multi-scale model, deeply explore the interrelationship between different scale data, increase data transparency, and clearly describe the calculation results of different scales, so that the research results can be compared and have extensive reference value. Finally, we put forward the development prospects of the life cycle of waste plastics, in order to provide a theoretical reference for the future development of the waste plastic pyrolysis industry.
Key words:  waste plastic    pyrolysis    carbon footprint    life cycle assessment
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  TK6  
基金资助: 国家重点研发计划(2022YFC3902405)
通讯作者:  * 杨晴,华中科技大学能源与动力工程学院教授、博士研究生导师。2005年华中科技大学能源与动力工程学院本科毕业,2011年北京大学工学院理学博士毕业后到华中科技大学工作至今。目前主要从事可再生能源系统碳排放计量与发展潜力评估等方面的研究工作。发表论文100余篇,包括Nature Communications、Nature Sustainability、PNAS等。qyang@hust.edu.cn   
作者简介:  周荷雯,山东大学高等技术研究院博士后,2017年6月、2022年12月分别于武汉科技大学和华中科技大学获得工学学士学位和博士学位。目前主要从事负碳能源技术的双碳研究。发表论文10余篇,包括Nature Communications等。
姚敦雪,2022年6月毕业于重庆大学,获得工学学士学位。现为华中科技大学能源与动力工程学院硕士研究生,在杨晴教授的指导下进行研究。目前主要从事可再生能源负碳潜力研究。
†共同第一作者
引用本文:    
周荷雯, 姚敦雪, 杨晴. 废弃塑料热解技术碳足迹研究进展[J]. 材料导报, 2024, 38(14): 22120220-8.
ZHOU Hewen, YAO Dunxue, YANG Qing. Research Progress on Carbon Footprint of Waste Plastic Pyrolysis Technology. Materials Reports, 2024, 38(14): 22120220-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120220  或          http://www.mater-rep.com/CN/Y2024/V38/I14/22120220
1 Ma Z F, Niu G Q, Lu S. China Plastics, 2022, 36(6), 142 (in Chinese).
马占峰, 牛国强, 芦珊. 中国塑料, 2022, 36(6), 142.
2 Sardon H, Dove A P. Science, 2018, 360, 380.
3 Geyer R. In:Plastic waste and recycling, Letcher T M, ed., Elsevier, Amsterdam, 2020, pp. 664.
4 Tang G L, Hu B, Kang Z L, et al. Recyclable Resources and Circular Economy, 2013, 6(1), 31 (in Chinese).
汤桂兰, 胡彪, 康在龙, 等. 再生资源与循环经济, 2013, 6(1), 31.
5 Quina M J, Bordado J C M, Quinta-Ferreira R M. Journal of Hazardous Materials, 2010, 179, 382.
6 Cordova M R, Riani E. Marine Pollution Bulletin, 2021, 163, 111986.
7 Munir M T, Mansouri S S, Udugama I A, et al. Renewable and Sustai-nable Energy Reviews, 2018, 96, 64.
8 Schirmeister C G, Mülhaupt R. Macromolecular Rapid Communications, 2022, 43, 2200247.
9 Garcia J M, Robertson M L. Science, 2017, 358, 870.
10 Dai L L, Zhou N, Lv Y C, et al. Progress in Energy and Combustion Science, 2022, 93, 101021.
11 Weber R, Hagenmaier H. Chemosphere, 1999, 38(3), 529.
12 Kang Y T, Yang Q, Wang L, et al. Resources, Conservation and Recycling, 2022, 180, 106168.
13 Peng Y J, Wang Y P, Ke L Y, et al. Energy Conversion and Management, 2022, 254, 115243.
14 Rahimi A, García J M. Nature Reviews Chemistry, 2017, 1, 46.
15 Han J, Yao X, Zhan Y Q, et al. Journal of the Energy Institute, 2017, 90, 331.
16 Zhuo C W, Levendis Y A. Journal of Applied Polymer Science, 2013, 131(4), 1001.
17 Seo M W, Lee S H, Nam H, et al. Bioresource Technology, 2022, 343, 126109.
18 Li D, Lei S J, Wang P, et al. Renewable Energy, 2021, 173, 662.
19 Prajapati R, Kohli K, Maity S K, et al. Molecules, 2021, 26(11), 3175.
20 Park K B, Jeong Y S, Guzelciftci B, et al. Applied Energy, 2020, 259, 114240.
21 Maqsood T, Dai J Z, Zhang Y N, et al. Journal of Analytical and Applied Pyrolysis, 2021, 159, 105295.
22 Fernandez Y, Arenillas A, Menendez A. In:Advances in induction and microwave heating of mineral and organic materials, Grundas S, ed., InTech, Spain, 2011, pp. 752.
23 Soni V K, Singh G, Vijayan B K, et al. Energy & Fuels, 2021, 35, 12763.
24 Lee K H. Journal of Analytical and Applied Pyrolysis, 2009, 85, 372.
25 Dai L L, Karakas O, Cheng Y L,Chemical Engineering Journal, 2023, 453, 139725.
26 Lee S Y, Yoon J H, Kim J R, et al. Polymer Degradation and Stability, 2001, 74, 297.
27 Syamsiro M, Saptoadi H, Norsujianto T, et al. Energy Procedia, 2014, 47, 180.
28 Cao Y Q, Qi F L, Cui H Y, et al. Environmental Science and Pollution Research, 2023, 30, 35853.
29 Geng Y, Dong H J, Xi F M, et al. China Population, Resources and Environment, 2010, 20(10), 6 (in Chinese).
耿涌, 董会娟, 郗凤明, 等. 中国人口·资源与环境, 2010, 20(10), 6.
30 Gui F Z, Ren S D, Zhao Y W, et al. Journal of Cleaner Production, 2019, 236, 117627.
31 Sun Q, Yi A L, Ni H G. Science of the Total Environment, 2021, 791, 148279.
32 Muthu S S, Li Y, Hu J Y, et al. Atmospheric Environment, 2011, 45(2), 469.
33 Chu J W, Zhou Y, Cai Y P, et al. Journal of Cleaner Production, 2022, 330, 129872.
34 Zhao C Z, Huang M C, Liu Y, et al. In: 2015 Materials Science Forum. Switzerland, 2016, pp. 366.
35 Zhou X L, He P J, Peng W, et al. Journal of Analytical and Applied Pyrolysis, 2022, 161, 105421.
36 Genuino H C, Ruiz M P, Heeres H J, et al. Waste Management, 2023, 156, 208.
37 Algozeeb W A, Savas P E, Yuan Z, et al. ACS Nano, 2022, 16, 7284.
38 Zhu Y, Miao J, Long M C, et al. Journal of Analytical and Applied Pyrolysis, 2022, 166, 105613.
39 Acomb J C, Wu C F, Williams P T. Applied Catalysis B: Environmental, 2016, 180, 497.
40 He S, Xu Y K, Zhang Y S, et al. Journal of Hazardous Materials, 2021, 402, 123726.
41 Veksha A, Ahamed A, Wu X Y, et al. Journal of Hazardous Materials, 2022, 421, 126717.
42 Heidari A, Younesi H. Journal of Environmental Chemical Engineering, 2020, 8(2), 103669.
43 Gear M, Sadhukhan J, Thorpe R, et al. Journal of Cleaner Production, 2018, 180, 735.
44 Salem S M, Evangelisti S, Lettieri P. Chemical Engineering Journal, 2014, 244, 391.
45 Benavides P T, Sun P P, Han J W, et al. Fuel, 2017, 203, 11.
46 Falinski M M, Plata D L, Chopra S S, et al. Nature Nanotechnology, 2018, 13, 708.
47 Vikram S, Rosha P, Kumar S. Energy & Fuels, 2021, 35(9), 7406.
48 Zhao X, You F Q. ACS Sustainable Chemistry & Engineering, 2021, 9, 12167.
49 Kawajiri K, Goto T, Sakurai S, et al. Journal of Cleaner Production, 2020, 255, 120015.
50 Ahamed A, Veksha A, Yin K, et al. Journal of Hazardous Materials, 2020, 390, 121449.
51 Azapagic A, Clift R. Computers & Chemical Engineering, 1999, 23(10), 1509.
52 Costa L P, Miranda D, Pinto J C. ACS Sustainable Chemistry & Enginee-ring, 2022, 10, 3799.
53 Bora R R, Wang R, You F Q. ACS Sustainable Chemistry & Engineering, 2020, 8(43), 16350.
54 Tornos A S, Garay A G, Pozo C, et al. ACS Sustainable Chemistry & Engineering, 2020, 8(9), 3561.
[1] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[2] 罗振敏, 张春艳, 杨勇. 氨纶防黄剂粉尘的着火特性分析[J]. 材料导报, 2024, 38(11): 22100095-8.
[3] 林立海, 李处森, 颜雨坤, 白炜琛, 刘利冉, 张劲松. 热解碳泡沫材料吸波机理研究[J]. 材料导报, 2024, 38(1): 22050338-7.
[4] 梁永宸, 石宵爽, 张聪, 张滔, 王晓琪. 粉煤灰地聚物混凝土性能与环境影响的综合评价[J]. 材料导报, 2023, 37(2): 21060162-6.
[5] 李文生, 黄晓龙, 成波, 李建军, 宋强, 赛纽特·乌拉吉米尔. 硅低温热解活化包覆超细金刚石及其抗氧化和分散稳定性[J]. 材料导报, 2023, 37(11): 21120094-6.
[6] 黄艳琴, 甄宇航, 王晨州, 宁晓阳, 刘兰岭, 李凯, 赵莉, 陆强. “双碳”背景下市政污泥热解资源化利用研究进展[J]. 材料导报, 2023, 37(10): 23020016-6.
[7] 桂叶, 黄雪刚, 刘洋, 李博文, 谭春玲, 张峻源, 仇浩. 农林生物质热解过程中生成气溶胶的人体细胞毒性研究进展[J]. 材料导报, 2023, 37(10): 21090293-8.
[8] 周晶晶, 周军, 吴雷, 杨茸茸, 宋永辉, 张秋利. 生物质供氢体协助低变质煤加氢热解提质的研究进展[J]. 材料导报, 2022, 36(9): 20070237-8.
[9] 陈彪, 谭静, 付小航, 卢郁静, 朱玥玮, 黄晶, 狄雨萌, 丁延伟. 竹纸老化的热解特性及其老化程度的量化评价[J]. 材料导报, 2022, 36(13): 21040180-5.
[10] 文渊, 胡珊, 何浏伟. 硼泥碳化法制备碱式碳酸镁的工艺研究[J]. 材料导报, 2021, 35(Z1): 132-136.
[11] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[12] 朱浩彤, 刘玲伟, 闫铭, 张鸿, 郭静, 夏英. 纤维气凝胶的分类、制备工艺及应用现状[J]. 材料导报, 2021, 35(23): 23057-23067.
[13] 胡辰玮, 李彬, 吴玉锋, 杨名, 张书豪, 潘德安. 废有机-无机复合材料热解回收技术现状与展望[J]. 材料导报, 2021, 35(21): 21091-21098.
[14] 李涛, 何松, 林晓莹, 郝世吉, 檀付瑞, 杨震宇, 陈德良, 杨华明. 农林废弃生物质资源精深加工技术进展[J]. 材料导报, 2021, 35(19): 19001-19014.
[15] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed