Please wait a minute...
材料导报  2021, Vol. 35 Issue (19): 19001-19014    https://doi.org/10.11896/cldb.20090140
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
农林废弃生物质资源精深加工技术进展
李涛1, 何松1, 林晓莹1, 郝世吉1, 檀付瑞1, 杨震宇1, 陈德良1,2, 杨华明3
1 东莞理工学院材料科学与工程学院科技创新研究院,东莞 523808
2 郑州大学材料科学与工程学院,郑州 450001
3 中南大学资源加工与生物工程学院,长沙 410083
Recent Advances on Deep Processing Technologies for Resourcing Utilization of Agricultural and Forestry Biomass Wastes
LI Tao1, HE Song1, LIN Xiaoying1, HAO Shiji1, TAN Furui1, YANG Zhengyu1, CHEN Deliang1,2, YANG Huaming3
1 Institute of Science & Technology Innovation, School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China
2 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
3 School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
下载:  全 文 ( PDF ) ( 5810KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 农林废弃生物质主要由木质素、纤维素等组成,来源广泛、可再生,通过对其进行精深加工,可获得具有高附加值的产品,是一种潜在的化石资源替代品,对绿色可持续发展具有重大意义。在生物质资源化产品中,生物质炭材料可通过热解和水热两种炭化方法获得,功能性炭材料的设计与制备是近年来的研究重点。生物质合成气可通过气化、热解、水热气化等方法获得,主要含有H2、CO等气体,可直接作为燃料,或者作为合成生物质油及其他化学品的原料,目前的研究主要致力于提高生物质合成气的产率和质量。生物质油则可通过热解、水热液化等方法得到,或以生物质合成气为原料经费托合成获得,生物质油主要含有烷烃、烯烃、芳香族化合物等,通过精炼可作为汽油、柴油的替代品,提高生物油的产率及选择性是近年来的研究重点。
本文根据生物质深加工产物形态的不同,将生物质精深加工技术分为固相、气相、液相等三类,从生物质利用技术的原理、工艺条件、最新进展等角度,对农林废弃生物质资源的精深加工研究进展进行了梳理和系统总结,列举了部分代表性研究成果,旨在进一步理解生物质农林废弃物资源化精深加工技术发展的前沿动态、前景与潜力,为探求绿色可持续发展提供新的工程化思路与方法。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李涛
何松
林晓莹
郝世吉
檀付瑞
杨震宇
陈德良
杨华明
关键词:  农林废弃物  生物质  热解  水热  生物质炭  生物质合成气  生物质油  资源化    
Abstract: Biomass, mainly composed of lignin and cellulose, is abundant and renewable. Through physical and chemical methods, these agricultural and forestry waste biomasses can be processed to be high value-added products, such as carbon materials, bio-oil, organic chemicals and so on, and this is of great significance for green and sustainable development. Biomass carbon materials can be obtained by pyrolysis and hydrothermal carbonization methods, and the research on biochar is extensively focused on the design and preparation of functional carbon materials in recent years. Biomass syngas can be obtained by gasification, pyrolysis, hydrothermal gasification and other methods. Biomass syngas mainly contains H2, CO and other gases, and can be directly used as fuel or as raw materials for the synthesis of biomass oil and other chemicals. The yields and quality of biomass syngas are usually low, and different catalysts are developed to improve them. Biomass oils can be obtained by pyrolysis, hydrothermal liquefaction and biomass syngas as raw materials. Biomass oils mainly contain alkanes, olefins, aromatic compounds and so on. They can be used as the substitute for gasoline and diesel oil after refining. The compositions of bio-oils are complex and contain a variety of organic compounds, and the separation and purification of these components and enhancing yields of target oils are the research focus in recent years.
In this review, the deep processing technologies of biomass are divided into the solid-phase, gas-phase and liquid-phase utilization ones according to the different forms of target products prepared by deep-processing biomass. From the perspective of the principle, process conditions and the latest progress of typical utilization technology of biomass, the fine-processing technologies of agricultural and forestry biomass are systematically summarized, and some representative research examples are introduced. In order to further understand the developing trend, prospect and potential of agricultural and forestry biomass, the intensive processing technologies provide new engineering ideas and technical support for exploring green and sustainable development.
Key words:  biomass wastes    deep processing    pyrolysis    carbonization    biomass carbon    bio-syngas    bio-oil    resource utilization
               出版日期:  2021-10-10      发布日期:  2021-11-03
ZTFLH:  TQ91  
基金资助: 国家自然科学基金(51574205);广东省自然科学基金(2018B030311022);广东高等教育创新团队(2017KCXTD030);广东省高等学校非粮生物质高效热解与利用技术工程研究中心(2016GCZX009);东莞理工学院高层次人才项目(KCYKYQD2017017);河南省高校科技创新团队(19IRTSTHN028);东莞理工学院大学生创新创业计划立项项目(201911819038)
通讯作者:  dlchen@dgut.edu.cn; hmyang@csu.edu.cn   
作者简介:  李涛,2012年毕业于郑州大学,获工学硕士学位,现为东莞理工学院研究助理,主要从事能源转换与存储功能材料的研究。
陈德良,博士,郑州大学教授,博士研究生导师,2005年博士毕业于中国科学院上海硅酸盐研究所,河南省学术技术带头人、河南省科技创新杰出青年、河南省高校创新人才、郑州市青年科技奖获得者、东莞理工学院学科领军人才,现任东莞理工学院材料科学与工程学院副院长。主要从事生物质与矿物等天然资源材料、功能精细陶瓷、环境净化与催化材料、纳米结构材料、光电功能复合材料的设计、制备与应用研究,对先进无机材料的制备、生物质及矿物材料的精细加工及高效利用方法与思路以及高附加值化有一定基础和经验。
杨华明,工学博士,中南大学教授、博士研究生导师,中组部国家“万人计划”领军人才、国家杰出青年科学基金获得者、国家中青年科技创新领军人才、湖南省科技领军人才、教育部新世纪优秀人才,享受国务院政府特殊津贴。现任中国建筑材料行业黏土矿物功能材料重点实验室主任、矿物材料及其应用湖南省重点实验室主任、湖南省矿物材料国际联合实验室(国际科技创新合作基地)主任。在中南工业大学获学士、硕士和博士学位,先后在英国布里斯托大学、澳大利亚昆士兰大学、俄罗斯科学院固态化学研究所任访问学者。长期从事矿物材料、能源与环境材料、生物医学材料、材料计算、固废资源化等研究,致力于材料、矿物、化学、物理、生物医学等多学科交叉,主持国家自然科学基金、国家科技支撑计划、863课题、973专题、博士点基金、教育部重点项目等多项基金项目。
引用本文:    
李涛, 何松, 林晓莹, 郝世吉, 檀付瑞, 杨震宇, 陈德良, 杨华明. 农林废弃生物质资源精深加工技术进展[J]. 材料导报, 2021, 35(19): 19001-19014.
LI Tao, HE Song, LIN Xiaoying, HAO Shiji, TAN Furui, YANG Zhengyu, CHEN Deliang, YANG Huaming. Recent Advances on Deep Processing Technologies for Resourcing Utilization of Agricultural and Forestry Biomass Wastes. Materials Reports, 2021, 35(19): 19001-19014.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090140  或          http://www.mater-rep.com/CN/Y2021/V35/I19/19001
1 Yang D P, Li Z, Liu M, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(5), 4564.
2 Zhang W, Duo H, Li S, et al. Colloid and Interface Science Communications, 2020, 38, 100308.
3 Zhu Z,Xu Z. Renewable and Sustainable Energy Reviews, 2020, 134, 110308.
4 Ren J, Cao J P, Zhao X Y, et al. Renewable and Sustainable Energy Reviews, 2019, 116, 109426.
5 Dai L, Zhou N, Li H, et al. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104845.
6 Manna S, Roy D, Adhikari B, et al. Environmental Progress & Sustaina-ble Energy, 2018, 37(5), 1560.
7 Fauzia S, Aziz H, Dahlan D, et al. Desalination and Water Treatment, 2019, 147, 191.
8 Ennoukh F, Brini L, Chafik D, et al. Desalination and Water Treatment, 2019, 151, 273.
9 El-Azazy M, El-Shafie A S, Issa A A, et al. Journal of Chemistry,DOI:10.1155/2019/4926240.
10 Amro A N,Abhary M K. Polish Journal of Environmental Studies, 2019, 28(5), 3589.
11 Milani P A, Consonni J L, Labuto G, et al. Environmental Science and Pollution Research, 2018, 25(36), 35906.
12 Osman A I, Ahmed A T, Johnston C R, et al. Environmental Progress & Sustainable Energy, 2018, 37(3), 1058.
13 Nag S, Mondal A, Roy D N, et al. Environmental Technology & Innovation, 2018, 11, 83.
14 Mazur L P, Cechinel M A P, De Souza S M A G U, et al. Journal of Environmental Management, 2018, 223, 215.
15 Litefti K, Freire M S, Stitou M, et al. Scientific Reports, 2019, 9, 16530.
16 Sellaoui L, Franco D, Ghalla H, et al. Chemical Engineering Journal, 2020, 394, 125011.
17 Abaide E R, Dotto G L, Tres M V, et al. Bioresource Technology, 2019, 284, 25.
18 Jain S N, Sonawane D D, Shaikh E R, et al. Sustainable Chemistry and Pharmacy, 2020, 16, 100269.
19 Balarak D, Abasizadeh H, Yang J K, et al. Desalination and Water Treatment, 2020, 190, 331.
20 Sharma P R, Chattopadhyay A, Sharma S K, et al. ACS Sustainable Chemistry & Engineering, 2018, 6(3), 3279.
21 Wang Q, Zheng C, Cui W, et al. Chemical Engineering Journal, 2020, 391, 123581.
22 Ma M, Liu Z, Hui L, et al. International Journal of Biological Macromolecules, 2019, 139, 640.
23 Kadam A A, Sharma B, Saratale G D, et al. Cellulose, 2020, 27(6), 3301.
24 Asim N, Amin M H, Alghoul M A, et al. Journal of Natural Fibers, 2021, 18(7), 968.
25 Elmorsi R R, El-Wakeel S T, El-Dein W A S, et al. Scientific Reports, 2019, 9, 3356.
26 Yu D, Morisada S, Kawakita H, et al. Processes, 2019, 7(7), 412.
27 Tangtubtim S, Saikrasun S. Applied Surface Science, 2019, 467, 596.
28 Lin H, Han S, Dong Y, et al. Applied Surface Science, 2017, 412, 152.
29 Hassan M, Naidu R, Du J, et al. Science of the Total Environment, 2020, 702, 134893.
30 Rhaman M M, Karim M R, Hyder M K M Z, et al. Water Air and Soil Pollution, 2020, 231(4), 164.
31 Mullerova S, Baldikova E, Prochazkova J, et al. Materials Chemistry and Physics, 2019, 225, 174.
32 Lawagon C P,Amon R E C. Environmental Engineering Research, 2020, 25(5), 685.
33 Kambo H S, Dutta A. Renewable and Sustainable Energy Reviews, 2015, 45, 359.
34 Wu Y J, Li W, Wu Q, et al. Progress in Chemistry, 2016, 28(1), 121(in Chinese).
吴艳蛟, 李伟, 吴琼, 等. 化学进展, 2016, 28(1), 121.
35 Kumar A, Saini K, Bhaskar T. Bioresource Technology, 2020, 310, 123442.
36 Nizamuddin S, Baloch H A, Griffin G J, et al. Renewable and Sustaina-ble Energy Reviews, 2017, 73, 1289.
37 Heidari M, Dutta A, Acharya B, et al. Journal of the Energy Institute, 2019, 92(6), 1779.
38 Abd H S B, Teh S J, Lim Y S. BioResources, 2015, 10(3), 5974.
39 Azzaz A A, Khiari B, Jellali S, et al. Renewable & Sustainable Energy Reviews, 2020, 127, 109882.
40 Parra-Marfil A, Ocampo-Perez R, Collins-Martinez V H, et al. Environmental Research, 2020, 184, 109334.
41 Li F, Zimmerman A R, Hu X, et al. Chemosphere, 2020, 254, 126866.
42 Li B, Lv J Q, Guo J Z, et al. Bioresource Technology, 2019, 275, 360.
43 He C, Lin H, Dai L, et al. Environment International, 2020, 134, 105340.
44 Catlioglu F N, Akay S, Gozmen B, et al. International Journal of Environmental Science and Technology, 2020, 17(4), 1975.
45 Kazak O,Tor A. Journal of Hazardous Materials, 2020, 393, 122391.
46 Sharma H B, Sarmah A K, Dubey B. Renewable & Sustainable Energy Reviews, 2020, 123, 109761.
47 Lee J, Hong J, Jang D, et al. Journal of Environmental Management, 2019, 247, 115.
48 Zhang C, Ma X, Chen X, et al. Energy, 2020, 197, 117193.
49 S′liz M,Wilk M. Renewable Energy, 2020, 156, 942.
50 Kang K, Nanda S, Sun G, et al. Energy, 2019, 186, 115795.
51 Shao Y, Tan H, Shen D, et al. Fuel, 2020, 266, 117146.
52 Zhang X, Gao B, Zhao S, et al. Journal of Cleaner Production, 2020, 242, 118426.
53 Zhu G, Yang L, Gao Y, et al. Fuel, 2019, 244, 479.
54 Xiao K, Liu H, Li Y, et al. Chemical Engineering Journal, 2020, 382, 122997.
55 Lima H H C, Maniezzo R S, Llop M E G, et al. Journal of Molecular Liquids, 2019, 276, 570.
56 Zhuang X, Song Y, Zhan H, et al. Fuel, 2020, 260, 116320.
57 Kumar N S, Grekov D, Pré P, et al. Renewable and Sustainable Energy Reviews, 2020, 124, 109743.
58 Kaur P, Verma G, Sekhon S S. Progress in Materials Science, 2019, 102, 1.
59 Hou J, Liu Y, Wen S, et al. ACS Omega, 2020, 5(23), 13548.
60 Huang G, Wu X, Hou Y, et al. Biomass Conversion and Biorefinery, 2020, 10(2), 267.
61 Hong P, Liu X, Zhang X, et al. International Journal of Energy Research, 2020, 44(7), 5385.
62 Yang D, Jing H, Wang Z, et al. Journal of Colloid and Interface Science, 2018, 528, 208.
63 Ao W, Fu J, Mao X, et al. Renewable & Sustainable Energy Reviews, 2018, 92, 958.
64 Liew R K, Chai C, Yek P N Y, et al. Journal of Cleaner Production, 2019, 208, 1436.
65 Yek P N Y, Liew R K, Osman M S, et al. Journal of Environmental Management, 2019, 236, 245.
66 Liang J, Qu T, Kun X, et al. Applied Surface Science, 2018, 436, 934.
67 Zhao D, Zhuang Z, Cao X, et al. Chemical Society Reviews, 2020, 49(7), 2215.
68 Yang L, Shui J, Du L, et al. Advanced Materials, 2019, 31(13), 1804799.
69 Yu L, Yang C, Zhang W, et al. Journal of Colloid and Interface Science, 2020, 575, 406.
70 Peng X, Zhang L, Chen Z, et al. Advanced Materials, 2019, 31(16), 1900341.
71 Liu L, Zeng G, Chen J, et al. Nano Energy, 2018, 49, 393.
72 He D, Zhao W, Li P, et al. Journal of Alloys and Compounds, 2019, 773, 11.
73 Wu T, Li P, Wang H, et al. Chemical Communications, 2019, 55(18), 2684.
74 Zhou H, Hong S, Zhang H, et al. Applied Catalysis B-Environmental, 2019, 256, 117767.
75 Niu Y, Teng X, Gong S, et al. Journal of Materials Chemistry A, 2020, 8(27), 13725.
76 Kumar T R, Kumar G G, Manthiram A. Advanced Energy Materials, 2019, 9(16), 1803238.
77 Zhang G, Liu X, Wang L, et al. ACS Sustainable Chemistry & Enginee-ring, 2019, 7(23), 19104.
78 Zhang X, Huang Q, Zhang M, et al. Journal of Alloys and Compounds, 2020, 822, 153718.
79 Chen Q, Tan X, Liu Y, et al. Journal of Materials Chemistry A, 2020, 8(12), 5773.
80 Yang S, Wang S, Liu X, et al. Carbon, 2019, 147, 540.
81 Cai Y, Luo Y, Dong H, et al. Journal of Power Sources,2017,353,260.
82 Gong Y, Li D, Luo C, et al. Green Chemistry, 2017, 19(17), 4132.
83 Nwachukwu C M, Toffolo A, Wetterlund E. Renewable Energy, 2020, 146, 2797.
84 Santos R G D,Alencar A C. International Journal of Hydrogen Energy, 2020, 45(36), 18114.
85 Shayan E, Zare V, Mirzaee I. Energy Conversion and Management, 2018, 159, 30.
86 Cao Y, Wang Q, Du J, et al. Energy Conversion and Management, 2019, 199, 111628.
87 Nguyen N M, Alobaid F, May J, et al. Energy, 2020, 202, 117744.
88 Martinez I, Kulakova V, Grasa G, et al. Fuel, 2020, 259, 116252.
89 Xiong S, He J, Yang Z, et al. Energy, 2020, 194, 116831.
90 Kwon D, Oh J I, Lambe S S, et al. Bioresource Technology, 2019, 285, 121356.
91 Wang Z, Burra K G, Zhang M, et al. Applied Energy, 2020, 269, 114996.
92 Kwon D, Lee S S, Jung S, et al. 2020, 392, 123774.
93 Lin Y, Wang H, Wang Y, et al. Energy & Fuels, 2020, 34(7), 7847.
94 Yan X, Hu J, Zhang Q, et al. Bioresource Technology, 2020, 303, 122904.
95 Hu Q, Shen Y, Chew J W, et al. Chemical Engineering Journal, 2020, 379, 122346.
96 Liu G, Liao Y, Wu Y, et al. Energy Conversion and Management, 2019, 195, 262.
97 Zeng D, Cui D, Lu Y, et al. International Journal of Hydrogen Energy, 2020, 45(3), 1444.
98 He F, Huang Z, Wei G, et al. Energy Conversion and Management, 2019, 201, 112157.
99 Prasertcharoensuk P, Bull S J, Phan A N. Renewable Energy, 2019, 143, 112.
100 Liu P, Wang Y, Zhou Z, et al. Fuel, 2020, 271, 117638.
101 Al Arni S. Renewable Energy, 2018, 124, 197.
102 Yu H, Liu Y, Liu J, et al. Fuel, 2019, 254, 115622.
103 Liu J, Xiao X, Chen X, et al. Materials Reports A: Review Papers, 2014, 28(12), 302(in Chinese).
刘吉, 肖显斌, 陈旭娇, 等. 材料导报:综述篇, 2014, 28(12), 302.
104 Soomro A, Chen S, Ma S, et al. Energy & Environment, 2018, 29(6), 839.
105 Shi X, Zhang K, Cheng Q, et al. Renewable Energy, 2019, 140, 32.
106 Loy A C M, Yusup S, Lam M K, et al. Energy Conversion and Management, 2018, 165, 541.
107 Liu Y, Yu H, Liu J, et al. International Journal of Hydrogen Energy, 2019, 44(23), 11848.
108 Okolie J A, Nanda S, Dalai A K, et al. Renewable & Sustainable Energy Reviews, 2020, 119, 109546.
109 Su W, Cai C, Liu P, et al. International Journal of Hydrogen Energy, 2020, 45(29), 14744.
110 Okolie J A, Nanda S, Dalai A K, et al. Energy Conversion and Management, 2020, 208, 112545.
111 Okolie J A, Nanda S, Dalai A K, et al. International Journal of Hydrogen Energy, 2020, 45(36), 18275.
112 Selvi G D, Çokkuvvetli T, Sağlam M, et al. The Journal of Supercritical Fluids, 2019, 152, 104542.
113 Arun J, Gopinath K P, Vo D V N, et al. Bioresource Technology Reports, 2020, 11, 100459.
114 Sharma A, Pareek V, Zhang D. Renewable and Sustainable Energy Reviews, 2015, 50, 1081.
115 Fahmy T Y A, Fahmy Y, Mobarak F, et al. Environment, Development and Sustainability, 2020, 22(1), 17.
116 Gao X, Xu Q, Li Z, et al. Chemical Industry and Engineering Progress,2016, 35(10), 3032(in Chinese).
高新源, 徐庆, 李占勇, 等. 化工进展, 2016, 35(10), 3032.
117 Chen D, Zhang H, Liu D, et al. ACTA Energiae Solaris Sinica, 2017, 38(2), 565(in Chinese).
陈登宇, 张鸿儒, 刘栋, 等. 太阳能学报, 2017, 38(2), 565.
118 Guedes R E, Luna A S, Torres A R. Journal of Analytical and Applied Pyrolysis, 2018, 129, 134.
119 Alvarez-Chavez B J, Godbout S, Palacios-Rios J H, et al. Biomass and Bioenergy, 2019, 128, 105333.
120 Fu X, Li Q, Hu C. Journal of Analytical and Applied Pyrolysis, 2019, 144, 104696.
121 Mishra R K, Kumar V, Mohanty K. Journal of the Energy Institute, 2020, 93(3), 1148.
122 Chatterjee G, Shadangi K P, Mohanty K. Fuel, 2018, 234, 609.
123 Zhou N, Liu S, Zhang Y, et al. Bioresource Technology, 2018, 267, 257.
124 Kumar R, Strezov V, Lovell E, et al. Bioresource Technology, 2019, 279, 404.
125 Navarro R M, Guil-Lopez R, Fierro J L G, et al. Journal of Analytical and Applied Pyrolysis, 2018, 134, 362.
126 Mishra R K, Iyer J S, Mohanty K. Waste Management, 2019, 89, 397.
127 Cao B, Xia Z, Wang S, et al. Journal of Analytical and Applied Pyrolysis, 2018, 134, 526.
128 Yu Z, Dai M, Huang M, et al. Renewable Energy, 2018, 125, 465.
129 Wang W, Luo Z, Li S, et al. Catalysts, 2020, 10(4), 378.
130 Lu Q, Guo H Q, Zhou M X, et al. Fuel Processing Technology, 2018, 173, 134.
131 Li C, Yue X, Yang J, et al. Energies, 2019, 12(20), 3972.
132 Ma S W, Zhang G, Li H, et al. Biomass Conversion and Biorefinery, DOI:10.1007/s13399-020-00799-7.
133 Cao L, Zhang C, Chen H, et al. Bioresource Technology, 2017, 245, 1184.
134 Miyata Y, Sagata K, Yamazaki Y, et al. Industrial & Engineering Chemistry Research, 2018, 57(44), 14870.
135 Schuler J, Hornung U, Kruse A, et al. Journal of Biomaterials and Nanobiotechnology, 2017, 8(1), 96.
136 Beims R F, Hu Y, Shui H, et al. Biomass and Bioenergy, 2020, 135, 105510.
137 Scarsella M, De Caprariis B, Damizia M, et al. Biomass and Bioenergy, 2020, 140, 105662.
138 De Caprariis B, Bracciale M P, Bavasso I, et al. Science of the Total Environment, 2020, 709, 136215.
139 Saber M, Golzary A, Hosseinpour M, et al. Applied Energy, 2016, 183, 566.
140 Ma C, Geng J, Zhang D, et al. Journal of the Energy Institute, 2020, 93(2), 581.
141 Yim S C, Quitain A T, Yusup S, et al. The Journal of Supercritical Fluids, 2017, 120, 384.
142 Qi Z, Chen L, Zhang S, et al. Applied Catalysis A: General, 2020, 602, 117701.
143 Du H, Jiang M, Ma X, et al. Catalysis Today, 2020, 376, 144.
144 Zhuo Y, Zhu L, Liang J, et al. Fuel, 2020, 262, 116490.
145 Gong K, Lin T, An Y, et al. Applied Catalysis A: General, 2020, 592, 117414.
146 Zhang H, Zhang H, Qian W, et al. Catalysis Today, DOI: 10.1016/j.cattod.2020.07.040.
147 Arslan M T, Qureshi B A, Gilani S Z A, et al. ACS Catalysis, 2019, 9(3), 2203.
148 Xiao K, Bao Z, Qi X, et al. Chinese Journal of Catalysis, 2013, 34(1), 116.
149 Zhao L, Li Y, Liu X, et al. Catalysis Today, DOI: 10.1016/j.cattod.2019.01.069.
150 Qu H, He S, Su Y, et al. Fuel, 2020, 281, 118760.
151 Sun X, Atiyeh H K, Huhnke R L, et al. Bioresource Technology Reports, 2019, 7, 100279.
[1] 文渊, 胡珊, 何浏伟. 硼泥碳化法制备碱式碳酸镁的工艺研究[J]. 材料导报, 2021, 35(Z1): 132-136.
[2] 吴春丽, 陈哲, 谢红波, 麦俊明, 苏青. 不锈钢渣的资源处置研究进展[J]. 材料导报, 2021, 35(Z1): 462-466.
[3] 杨小军, 池作和, 王进卿, 潜培豪, 王广鑫, 王杰. 玻璃粉对聚硅氮烷陶瓷涂层厚度及孔隙的影响[J]. 材料导报, 2021, 35(6): 6060-6064.
[4] 杨名, 顾一帆, 吴玉锋, 潘德安, 龚裕. 面向固废资源化的能源-环境-经济综合绩效评价研究进展[J]. 材料导报, 2021, 35(17): 17103-17110.
[5] 赵丹丹, 王舒笑, 顾菁, 单锐, 袁浩然. 基于固废炭基催化剂的稻壳热解气体提质研究[J]. 材料导报, 2021, 35(11): 11001-11006.
[6] 胡耀强, 房得珍, 叶秀深, 张慧芳, 刘海宁, 吴志坚. 西瓜皮基生物质碳气凝胶的制备及对染料的吸附[J]. 材料导报, 2021, 35(11): 11007-11012.
[7] 赵欢欢, 宋香琳, 程灿, 张利亚, 王留成. 麦秸生物质炭对Pb(Ⅱ)的吸附研究[J]. 材料导报, 2020, 34(Z2): 112-116.
[8] 李强, 姜勇刚, 冯军宗, 李良军, 冯坚. 水热-热静压工艺制备陶瓷材料的研究进展[J]. 材料导报, 2020, 34(Z2): 123-127.
[9] 王三胜, 王莹. 石墨提纯工艺研究进展综述和新技术展望[J]. 材料导报, 2020, 34(Z2): 147-151.
[10] 卢玉灵, 李大玉, 张超. 微波水热合成三元金属氧化物的研究进展[J]. 材料导报, 2020, 34(Z2): 168-172.
[11] 杨露, 郭敏, 宋志成, 刘大伟, 倪玉凤. 基于高长径比TiO2纳米线的染料敏化太阳能电池光阳极的制备[J]. 材料导报, 2020, 34(Z1): 7-12.
[12] 齐美丽, 梅凤策, 黄浩, 崔凤坤. 一步法合成锶离子掺杂羟基磷灰石多孔微球[J]. 材料导报, 2020, 34(Z1): 63-65.
[13] 莫若飞. 多孔腔骰子形和六足形氧化亚铜的水热合成[J]. 材料导报, 2020, 34(Z1): 148-152.
[14] 于富成, 南冬梅, 宋天云, 王博龙, 许博宇, 何玲, 王姝, 段红燕. ZnO/Ag2CrO4复合物的光催化降解特性及其Z型电子传输光催化机理[J]. 材料导报, 2020, 34(8): 8003-8009.
[15] 刘树和, 刘彬, 赵焱, 张兰, 于晓华, 李如燕, 姚耀春, 董鹏. 香蒲活性炭用于锂硫电池正极材料[J]. 材料导报, 2020, 34(8): 8014-8019.
[1] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[2] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[3] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[4] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[5] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[6] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[9] FANG Sheng, HUANG Xuefeng, ZHANG Pengcheng, ZHOU Junpeng, GUO Nan. A Mechanism Study of Loess Reinforcing by Electricity-modified Sodium Silicate[J]. Materials Reports, 2017, 31(22): 135 -141 .
[10] ZHOU Dianwu, HE Rong, LIU Jinshui, PENG Ping. Effects of Ge, Si Addition on Energy and Electronic Structure of ZrO2 and Zr(Fe,Cr)2[J]. Materials Reports, 2017, 31(22): 146 -152 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed