Please wait a minute...
材料导报  2024, Vol. 38 Issue (14): 22120138-5    https://doi.org/10.11896/cldb.22120138
  无机非金属及其复合材料 |
基于旋转磁场作用的磁流变脂磁致电阻特性研究
居本祥1,*, 付本元1, 吕冰2
1 重庆理工大学机械工程学院,重庆 400054
2 青岛科技大学自动化与电子工程学院,山东 青岛 266044
Study on Magnetoresistance Properties of Magnetorheological Grease Based on Rotating Magnetic Field
JU Benxiang1,*, FU Benyuan1, LYU Bing2
1 College of Mechanical Engineering, Chongqing University of Technology, Chongqing 400054, China
2 School of Automation and Electronic Engineering, Qingdao University of Science and Technology, Qingdao 266044,Shandong, China
下载:  全 文 ( PDF ) ( 4846KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 磁流变脂是一种兼具快速磁响应特性和弱流动性的新型磁敏材料,在传感及阻尼减振等领域有着潜在应用价值。本工作利用羰基铁粉作为软磁填充颗粒与脂类基体混合制备了磁流变脂样品,依托所设计的电阻试验单元,并通过自建的旋转磁场试验表征系统,研究了旋转磁场的偏转角度与旋转速度对磁流变脂磁致电阻特性的影响,并在微观层面对影响磁致电阻特性的机理进行了分析。结果表明:增加软磁填充颗粒的含量,可有效提升磁流变脂磁致电阻的相对变化量;在单周期的磁场偏转角度试验中,磁流变脂电阻试验单元的阻值变化形成对称的上升段与下降段,在偏转周期范围内阻值的绝对变化量为2.4 MΩ;试验单元的阻值在不同磁场偏转速度下呈现了与转速相匹配的周期性变化趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
居本祥
付本元
吕冰
关键词:  磁流变脂  旋转磁场  羰基铁粉  磁致电阻    
Abstract: Magnetorheological grease is a new magneto-sensitive material with fast magnetic response and weak fluidity, which has potential application value in sensing and damping and vibration reduction. Magnetorheological grease was prepared by using carbonyl iron powder as soft magnetic filling particles and lipid matrix. A resistance test unit and a rotating magnetic field test system were established. The influence of the deflection angle and rotation velocity of the rotating magnetic field on the magnetoresistive properties of magnetorheological grease was studied and the mechanism of the influence on the magnetoresistiveproperties was analyzed at the microscopic level. The results show that the relative variation of magnetoresistance can be effectively improved by increasing the content of soft magnetic filling particles. In the single-period magnetic field deflection angle test, the variation of the resistance of magnetorheological grease resistance test unit formed a symmetrical rising and falling section, and the absolute variation of the resistance value within the range of deflection period was 2.4 MΩ. The resistance value of the test unit showed a periodic variation trend matching the rotating speed at different deflection speeds.
Key words:  magnetorheological grease    rotating magnetic field    carbonyl iron powder    magnetoresistance
出版日期:  2024-07-25      发布日期:  2024-08-12
ZTFLH:  O482.54  
基金资助: 重庆市自然科学基金面上项目(cstc2019jcyj-msxmX0005;cstc2020jcyj-msxmX0425);国家自然科学基金(51905062;61901068);中国博士后科学基金项目(2021MD703913)
通讯作者:  * 居本祥,重庆理工大学机械工程学院副教授。2013年12月在重庆大学获得仪器科学与技术专业博士学位。主要从事磁敏材料及其传感技术方面的研究,在国内外学术期刊上发表SCI与EI论文10余篇。jubx@cqut.edu.cn   
引用本文:    
居本祥, 付本元, 吕冰. 基于旋转磁场作用的磁流变脂磁致电阻特性研究[J]. 材料导报, 2024, 38(14): 22120138-5.
JU Benxiang, FU Benyuan, LYU Bing. Study on Magnetoresistance Properties of Magnetorheological Grease Based on Rotating Magnetic Field. Materials Reports, 2024, 38(14): 22120138-5.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22120138  或          http://www.mater-rep.com/CN/Y2024/V38/I14/22120138
1 Yang G X, Pan J B, Zhou L J, et al. Materials Reports, 2021, 35(23), 23183 (in Chinese).
杨广鑫, 潘家保, 周陆俊, 等. 材料导报,2021, 35(23), 23183.
2 Prajapati H, Shahanand J, Nimkar H, et al. Materials Today: Procee-dings, 2020, 28(1), 40.
3 Sinan E, Inna M G, Harm A, et al. Computational Materials Science, 2022, 203, 111070.
4 Zheng J, Kan J, Hu M, et al. Acta Armamentarii, 2019, 40(19), 1761.
5 Norzilawati M, Amri M S, Ubaidillah, et al. Journal of Intelligent Mate-rial Systems & Structures, 2019, 30(5), 788.
6 Mohamad N, Mazlan S A, Ubaidillah. AIP Conference Proceedings, 2016, 1717(1),040027.
7 Wang H X, Zhang G, Ouyang Q, Wang J. Journal of Shanghai Jiaotong University, 2019, 53(3), 380.
8 Bica I. Journal of Industrial and Engineering Chemistry, 2009, 15, 233.
9 Bica I. Journal of Industrial and Engineering Chemistry, 2010, 16, 359.
10 Bica I. Journal of Industrial and Engineering Chemistry, 2009, 15, 769.
11 Yu M, Ju B X, Fu J, et al. Industrial & Engineering Chemistry Research, 2014, 53, 4704.
12 Liao G L, Liao C R, Wen H, et al. Acta Materiae Compositae Sinica, 2017, 34(9), 2085 (in Chinese).
廖干良, 廖昌荣, 文慧, 等.复合材料学报, 2017, 34(9), 2085.
13 Wang H Y, Luo Y P, Ji D S, et al. Materials Reports, 2020, 34(Z1), 486 (in Chinese).
王弘义, 罗一平, 纪东升, 等. 材料导报, 2020, 34(Z1), 486.
14 Bossis G, Abbo C, Cutillas S, et al. International Journal of Modem Physics B, 2001, 15(6&7), 564.
15 Wang Y, Xuan S H, Ge L. et al. Smart Materials and Structures, 2017, 26(1),015004.
16 Li G H, Huang X G, Wang J. Journal of Functional Polymers, 2013, 26((3), 236 (in Chinese).
李光辉, 黄学功, 王炅. 功能高分子学报,2013,26(3), 236.
17 Ju B X, Zhuang Q H. Materials for Mechanical Engineering, 2022,46(2),10 (in Chinese).
居本祥,庄秋慧.机械工程材料,2022, 46(2), 10.
18 Gast S, Zimmermann K. Journal of Sensors and Sensors Systems, 2020, 9, 319.
19 Du G T, Chen X D. Measurement, 2012, 45(1), 54.
20 Simmons J G. Journal of Applied Physics, 1963, 34(6), 1793.
21 Huang X G, Yan Z Y, Liu C, et al. Materials Research Innovations, 2015, 19(5), 924.
22 Zhang J Y, Pang H M, Wang Y, et al. Composites Science and Technology 2020, 191,108079.
23 Ruan X H, Wang Y, Xuan S H,et al. Smart Materials and Structures 2017, 26, 035067.
[1] 邓妍, 洪森, 曹湘杰, 蒋曜年, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对羰基铁基吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(1): 22040113-6.
[2] 袁江杭, 曲兆明, 赵芳, 许宝才, 孙肖宁, 王庆国. 片形羰基铁粉热处理工艺及其吸波性能研究[J]. 材料导报, 2022, 36(18): 21040268-6.
[3] 杨广鑫, 潘家保, 周陆俊, 高洪, 王晓雷. 磁流变脂材料及其应用研究进展[J]. 材料导报, 2021, 35(23): 23183-23191.
[4] 池强, 谢磊, 常良, 李强, 董亚强. 羰基铁粉/FeSiBCCr复合非晶磁粉芯的性能[J]. 材料导报, 2021, 35(10): 10023-10028.
[5] 周影影, 周万城, 叶梦元, 谢辉. 制备时间对CIPs/Fe3O4吸波性能的影响[J]. 材料导报, 2020, 34(10): 10008-10012.
[6] 胡志德, 赵湖钧, 王大伟. 羰基铁粉对锂基磁流变脂动态流变行为的影响[J]. 材料导报, 2019, 33(Z2): 630-633.
[7] 周影影, 谢辉, 周万城. 羰基铁粉抗氧化性能研究现状[J]. 《材料导报》期刊社, 2018, 32(5): 749-754.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed