Please wait a minute...
材料导报  2021, Vol. 35 Issue (21): 21091-21098    https://doi.org/10.11896/cldb.20090005
  材料与可持续发展(四)——材料再制造与废弃物料资源化利用* |
废有机-无机复合材料热解回收技术现状与展望
胡辰玮, 李彬, 吴玉锋, 杨名, 张书豪, 潘德安
北京工业大学循环经济研究院,北京 100124
Status and Progress of Recycling Waste Organic-inorganic Composites by Pyrolysis
HU Chenwei, LI Bin, WU Yufeng, YANG Ming, ZHANG Shuhao, PAN Dean
Institute of Circular Economy, Beijing University of Technology, Beijing 100124, China
下载:  全 文 ( PDF ) ( 3652KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 有机-无机复合材料是一种将高分子材料与其他无机物质通过特定方式结合而成的具有一定特性的功能材料,已广泛应用于工业、建筑、电子、交通等领域。然而,由于材料自身寿命和性能的衰减等因素,有机-无机复合材料将面临因性能衰弱而导致的大量周期性报废问题。传统的处理技术如堆积、填埋、机械分离、湿法冶金和焚化发电不仅会对环境造成较大的影响,而且无法充分利用复合材料自身的剩余价值。因此,如何实现有机-无机复合材料的高效、环保、高值化回收再利用成为了当前研究热点问题之一。热解法较现有常规技术在废有机-无机复合材料回收上兼具环保与经济性,近年来受到持续关注。本文以我国产生量大、处理难度高、资源化潜力好的废漆包线、废线路板、废旧轮胎和废风机叶片四种典型有机-无机复合材料为主要对象,梳理总结了国内外热解回收技术最新研究成果,提出当前研究中亟待解决的主要问题并对未来将要进行的工作进行了展望,以期为该领域的进一步研究提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
胡辰玮
李彬
吴玉锋
杨名
张书豪
潘德安
关键词:  复合材料  热解  漆包线  线路板  轮胎  风机叶片    
Abstract: Organic-inorganic composite material is a kind of functional material with certain characteristics that combines polymer materials and other inorganic substances in a specific way. It has been widely used in industry, construction, electronics, transportation and other fields. However, organic-inorganic composite materials will face periodic scrapping problems due to their own material life and performance degradation. Traditional processing technologies such as accumulation, landfill, mechanical separation, hydrometallurgy and incineration power generation not only have a negative impact on the environment, but also cannot make full use of the residual value of the composite material. Therefore, how to realize the environmental protection and high-value recycling of organic-inorganic composite materials has become one of the current research hotspots. Compared with the existing conventional technology, the pyrolysis is both environmentally friendly and economical in the recycling of waste organic-inorganic composite materials and has received continuous attention in recent years. This article focuses on four types of typical organic-inorganic composite materials, respectively are waste enameled wires, waste circuit boards, waste tires and waste fan blades,which have a large amount of waste, high difficulty in being recycled and potential of resource utilization. This article also summarizes the latest research results of pyrolysis recovery technology, and then puts forward the main problems that need to be solved urgently in the current studies. In the end, this article looks forward to the future work and hopes to provide references for further research in this field.
Key words:  composite material    pyrolysis    enameled wires    circuit boards    tires    fan blades
               出版日期:  2021-11-10      发布日期:  2021-11-30
ZTFLH:  TB333  
基金资助: 国家重点研发计划(2018YFC1902504)
通讯作者:  wuyufeng3r@126.com   
作者简介:  胡辰玮,2019年6月毕业于苏州大学,获得工学学士学位。现为北京工业大学循环经济研究院硕士研究生,在吴玉锋教授的指导下进行研究。目前主要研究方向为废线路板低温热解与深度脱溴。
吴玉锋,北京工业大学循环经济研究院教授,“资源环境与循环经济”交叉专业博士研究生导师,长期从事循环经济技术、政策及应用模式研究。主持国家重点研发计划、国家自然基金等来源项目40余项。在Journal of Cleaner Production、ACS Sustainable Chemistry & Engineering等期刊发表学术论文百余篇,其中SCI/CSSCI收录70余篇。
引用本文:    
胡辰玮, 李彬, 吴玉锋, 杨名, 张书豪, 潘德安. 废有机-无机复合材料热解回收技术现状与展望[J]. 材料导报, 2021, 35(21): 21091-21098.
HU Chenwei, LI Bin, WU Yufeng, YANG Ming, ZHANG Shuhao, PAN Dean. Status and Progress of Recycling Waste Organic-inorganic Composites by Pyrolysis. Materials Reports, 2021, 35(21): 21091-21098.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20090005  或          http://www.mater-rep.com/CN/Y2021/V35/I21/21091
1 Ogasa T, Takahashi J, Kemmochi K. Advanced Composite Materials, 1995, 4(3), 221.
2 Song B. A parameterized design system development for segmenting and casting type autoclave forming mold of composite components. Master's Thesis, Nanjing University of Aeronautics and Astronautics, China, 2018(in Chinese).
宋波. 分段铸造式复合材料热压罐成型模具参数化设计系统开发. 硕士学位论文,南京航空航天大学, 2018.
3 Luo H. Engineering Plastics Application, 2017, 45(2),133 (in Chinese).
罗辉.工程塑料应用, 2017, 45(2),133
4 Wang Y, Lin Y. Integrated Circuit Application, 2019(6), 69 (in Chinese).
王莹,林瑶. 集成电路应用, 2019(6), 69.
5 Xiong H, Wang X H, Zhang C C, et al. Chemical Engineering & Machinery, 2020(31), 179 (in Chinese).
熊皓,王学花,张纯琛,等. 机械化工, 2020(31), 179.
6 Zhang X. China Textile Leader, 2018(S1), 72 (in Chinese).
张璇.纺织导报, 2018(S1), 72.
7 Li Q K, Xiong Y K, Yan J X. Shandong Chemical Industry, 2020, 49(2), 227 (in Chinese).
李清坤,熊言开,闫纪宪.山东化工, 2020, 49(2), 227.
8 Xu Y Y, Huo P. Guangzhou Chemical Industry, 2020, 48(2), 27 (in Chinese).
徐阳阳,霍平. 广州化工, 2020, 48(2), 27.
9 Chen J, Wang J, Ni A. Journal of Reinforced Plastics and Composites, 2019, 38(12), 567.
10 UK to focus on sustainable composites. Reinforced Plastics,2020, 64(5), 234.
11 Alzamora B R, Barros R T D V. Waste Management, 2020, 115, 47.
12 Wang D, Li S L, Chen Z, et al. Studies in Science of Science, 2019, 37(10), 1874 (in Chinese).
王丹,李诗林,陈泽,等.科学学研究, 2019, 37(10), 1874.
13 Kang W. Beijing Planning Review, 2020(1), 125 (in Chinese).
康文.北京规划建设, 2020(1), 125.
14 Wei H J, Yu H, Peng B, et al. China Resources Comprehensive Utilization, 2019,37(11),56 (in Chinese).
魏浩杰,于皓,彭犇,等.中国资源综合利用,2019,37(11),56.
15 Duan Z J, Duan W C, Zhang R Q. China Plastics Industry, 2011, 39(1),14 (in Chinese).
段志军,段望春,张瑞庆. 塑料工业, 2011, 39(1),14.
16 Zhou Y H, Zeng Y F, Ye M Q. Resource Recycling, 2010(11), 48 (in Chinese).
周益辉,曾毅夫,叶明强. 资源再生, 2010(11), 48.
17 Hao J, Wang H F, Song S L, et al. China Resources Comprehensive Utilization, 2008(6), 30 (in Chinese).
郝娟,王海锋,宋树磊,等. 中国资源综合利用, 2008(6), 30.
18 Du M S, Zhou Q, Jiang Z Y, et al. World Nonferrous Metals, 2019(14), 266 (in Chinese).
都敏生,周强,蒋振宇,等. 世界有色金属, 2019(14), 266.
19 Guo Q, Yue X, Wang M, et al. Powder Technology, 2010, 198(3), 422.
20 Ji Z, Xu Y Y, Li J D, et al. Fire Science and Technology, 2020, 7(39), 994 (in Chinese).
计智,徐艳英,李金都,等. 灭火剂与阻燃材料, 2020, 7(39), 994.
21 Xu W S, Jiang X G, Yan D H, et al. Energy Engineering, 2005(2), 30 (in Chinese).
徐文胜,蒋旭光,严大海,等. 能源工程, 2005(2), 30.
22 Nahil M A, Williams P T. Journal of Analytical and Applied Pyrolysis, 2011, 91(1), 67.
23 Dong L, Zhou X Y, Liu J Y,et al. Environmental Pollution and Control, 2020, 42(10), 1211 (in Chinese).
董莉,周潇云,刘景洋,等. 环境污染与防治, 2020, 42(10), 1211.
24 Sun J P, Zhang Z J, Wang Q W,et al. Chemical Industry and Enginee-ring Progress, 2015, 34(S1), 156 (in Chinese).
孙剑平,张志军,王清文,等. 化工进展, 2015, 34(S1),156.
25 Gou J S, Hui F F, Qian Y,et al. Packaging Engineering, 2012, 33(23),30 (in Chinese).
苟进胜,惠飞飞,钱杨,等. 包装工程, 2012, 33(23), 30.
26 Kim Y, Park S, Kwon S Y, et al. Thermochimica Acta, 2012, 542, 62.
27 Danikas M, Morsalin S. Engineering Technology & Applied Science Research, 2019, 9(3), 154.
28 Sanmartín P, Cappitelli F, Mitchell R. Construction and Building Mate-rials, 2014, 71, 363.
29 Arndt S, Canum R. Metal Finishing, 2007, 105(5), 49.
30 Madhukar Y K, Mullick S, Shukla D K, et al. Applied Surface Science, 2013, 264, 892.
31 Zhang M J, Yang Y H. Recyclable Resources and Circular Economy, 1994(5), 13 (in Chinese).
张明杰,杨毅宏. 再生资源研究, 1994(5), 13.
32 Liu W, Wang N, Han J, et al. Waste Management,2020, 107, 82.
33 戴煜,姜纯,羊建高. 中国专利, CN201610719609.3, 2016.
34 戴煜,姜纯,羊建高. 中国专利, CN201620937870.6, 2017.
35 阙南平,黄文. 中国专利, CN201810487862.X, 2018.
36 Xu M. Research on the Recycling and Reutilization of Printed Circuit Board Scraps. Ph.D. Thesis, Tongji University,China, 2018 (in Chinese).
徐敏. 废弃印刷线路板的资源化回收技术研究. 博士学位论文,同济大学,2008.
37 Chen J J, Li B, Dai Y, et al. Modern Chemical Industry, 2019, 39(5), 42 (in Chinese).
陈静静,李彬,戴煜,等. 现代化工, 2019, 39(5), 42.
38 Zhang X Y. Gold leaching from waste printed circuit board by thiocyanate process. Master's Thesis, DongHua University, China, 2018 (in Chinese).
张潇尹. 废印刷线路板硫氰酸盐法浸金. 硕士学位论文,东华大学, 2008.
39 Wang B, Hong L. Journal of Safety and Environment, 2013, 13(1), 80 (in Chinese).
王波,洪丽.安全与环境学报, 2013, 13(1), 80.
40 Santella C, Cafiero L, De Angelis D, et al. Waste Management, 2016, 54, 143.
41 Ortuño N, Moltó J, Egea S, et al. Journal of Analytical and Applied Pyrolysis, 2013, 103, 189.
42 Quan C, Li A, Gao N. Waste Management, 2009, 29(8), 2353.
43 Du N, Ma H, Lin X, et al. Science of the Total Environment,2018, 636,1032.
44 Du N, Ma H, Zhang H, et al. Fuel Processing Technology, 2019, 192, 45.
45 Chiang H, Lin K, Lai M, et al. Journal of Hazardous Materials, 2007, 149(1), 151.
46 Zhao C, Zhang X, Shi L. Waste Management, 2017, 61, 354.
47 Li J, Duan H, Yu K, et al. Resources Conservation and Recycling, 2010, 54(11), 810.
48 Evangelopoulos P, Kantarelis E, Yang W. Energy Procedia,2017, 105, 986.
49 Ma H, Du N, Lin X, et al. Science of the Total Environment, 2018, 633, 264.
50 Mao Y Y, Ma Z Y, Yu L, et al. Journal of Zhejiang University(Enginee-ring Science), 2009, 43(5), 937 (in Chinese).
毛艳艳,马增益,余量,等. 浙江大学学报(工学版), 2009, 43(5), 937.
51 Gao R, Liu B, Zhan L, et al. Journal of Hazardous Materials, 2020, 392, 122447.
52 Wang Y, Sun S, Yang F, et al. Process Safety and Environmental Protection,2015, 98, 276.
53 Ma C, Kamo T. Journal of Analytical and Applied Pyrolysis, 2018, 134, 614.
54 Ma C, Kamo T. Journal of Analytical and Applied Pyrolysis,2019, 138,170.
55 Shen Y. Waste Management, 2018, 76, 537.
56 Evangelopoulos P, Kantarelis E, Yang W. Journal of Analytical and Applied Pyrolysis, 2015, 115, 337.
57 Gao R, Zhan L, Guo J, et al. Journal of Hazardous Materials,2020, 383,121234.
58 Lin K, Chiang H. Journal of Hazardous Materials, 2014, 271, 258.
59 Quan C, Li A, Gao N, et al. Journal of Analytical and Applied Pyrolysis, 2010, 89(1), 102.
60 Kim Y, Han T U, Watanabe C, et al. Journal of Analytical and Applied Pyrolysis, 2015, 115, 87.
61 Wang X L, Zhao Z L, Li H B. Chinese Journal of Environmental Engineering, 2011, 5(6), 1375 (in Chinese).
王小玲,赵增立,李海滨. 环境工程学报, 2011, 5(6), 1375.
62 Luo W, Huang H, Cao L C, et al. Fine Chemical Intermediates, 2015, 45(3),53 (in Chinese).
罗玮,黄骅,曹理朝,等. 精细化工中间体, 2015, 45(3), 53.
63 Torretta V, Rada E C, Ragazzi M, et al. Waste Management (Elmsford), 2015, 45,152.
64 Williams P T. Waste Management, 2013, 33(8), 1714.
65 Quan J W, Yu J X, Xu J Q, et al. Shanghai Energy Conservation, 2019(4), 262 (in Chinese).
权家薇,于佳雪,许君清,等.上海节能, 2019(4), 262.
66 Dong C C. China Tire Resources Recycling, 2016(3), 44(in Chinese).
董诚春. 中国轮胎资源综合利用, 2016(3), 44.
67 Wu H, Yang L, Chen H J, et al. Renewable Energy Resources, 2015, 33(9), 1387 (in Chinese).
吴昊,杨丽,陈海军,等. 可再生能源, 2015, 33(9),1387.
68 Huang J W, Li G M, He W Z, et al. Chemical Industry and Engineering Progress, 2010, 29(11), 2159 (in Chinese).
黄菊文,李光明,贺文智,等. 化工进展, 2010, 29(11), 2159.
69 Miranda M, Pinto F, Gulyurtlu I, et al. Fuel, 2013, 103, 542.
70 Grieco E, Bernardi M, Baldi G. Journal of Analytical and Applied Pyrolysis, 2008, 82(2), 304.
71 Yang Q, Yu S, Zhong H, et al. Journal of Hazardous Materials, 2021, 401, 123302.
72 Lah B, Klinar D, Likozar B. Chemical Engineering Science, 2013, 87, 1.
73 Liu S, Yu J, Bikane K, et al. Energy, 2018, 155, 215.
74 Danon B, De Villiers A, Görgens J F. Thermochimica Acta , 2015, 614, 59.
75 Wang B, Zheng H B, Xiao R. China Tire Resources Recycling, 2019(3), 36 (in Chinese).
王兵,郑宏斌,肖睿. 中国轮胎资源综合利用, 2019(3), 36.
76 郭庆民,毛文鹏,肖焕清. 中国专利, CN201620152043.6, 2016.
77 Wang J, Jiang J, Wang X, et al. Fuel (Guildford), 2020, 278, 118322.
78 Hijazi A, Al-Muhtaseb A A H, Aouad S, et al. Journal of Environmental Chemical Engineering, 2019, 7(6),103451.
79 Yu J, Liu S, Cardoso A, et al. Energy, 2019, 188, 116117.
80 Salmasi S S Z, Abbas-Abadi M S, Haghighi M N, et al. Fuel, 2015, 160,544.
81 Wang F, Gao N, Quan C, et al. Journal of Analytical and Applied Pyrolysis, 2020, 146, 104770.
82 Hijazi A, Boyadjian C, Ahmad M N, et al. Waste Management, 2018, 77, 10.
83 Wei X, Zhong H, Yang Q, et al. Energy Conversion and Management, 2019, 189, 143.
84 Nisar J, Ali G, Ullah N, et al. Journal of Environmental Chemical Engineering, 2018, 6(2), 3469.
85 Kan T, Strezov V, Evans T. Fuel, 2017, 191, 403.
86 Choi G, Jung S, Oh S, et al. Fuel Processing Technology, 2014, 123, 57.
87 Ahmed I, Gupta A K. International Journal of Hydrogen Energy, 2011, 36(7), 4340.
88 Yang J F, Wang Q H, Yang L J, et al. Polymer Materials Science & Engineering, 2005(3), 6 (in Chinese).
杨景锋,王齐华,杨丽君,等. 高分子材料科学与工程, 2005(3), 6.
89 Jensen J P, Skelton K. Renewable and Sustainable Energy Reviews, 2018, 97, 165.
90 An B S, Wang H J, Sun L. Engineering Plastics Application, 2011, 39(6), 98 (in Chinese).
安宝山,王慧军,孙利. 工程塑料应用, 2011, 39(6), 98.
91 Torres A, De Marco I, Caballero B M, et al. Fuel, 2000, 79(8), 897.
92 Akesson D, Foltynowicz Z, Christeen J, et al. Polimery, 2013, 58(7-8), 582.
93 Akesson D, Foltynowicz Z, Christeen J, et al. Journal of Reinforced Plastics and Composites, 2012, 31(17), 1136.
94 López F A, Martín M I, Alguacil F J, et al. Journal of Analytical and Applied Pyrolysis, 2012, 93, 104.
95 Yun Y M, Seo M W, Koo G H, et al. Fuel,2014, 137, 321.
96 Yun Y M, Seo M W, Ra H W, et al. Journal of Analytical and Applied Pyrolysis, 2015, 114, 40.
97 Witik R A, Teuscher R, Michaud V, et al. Composites Part A, 2013, 49, 89.
98 Bradna P, Zima J. Journal of Analytical and Applied Pyrolysis, 1992, 24(1), 75.
99 Meyer L O, Schulte K, Grove-Nielsen E. Journal of Composite Materials, 2009, 43(9), 1121.
100 López F A, Rodríguez O, Alguacil F J, et al. Journal of Analytical and Applied Pyrolysis, 2013, 104, 675.
[1] 任世强, 于筱, 马帅, 刘琨, 王淋, 由晴. 植骨材料在口腔种植中的应用概况及进展[J]. 材料导报, 2021, 35(Z1): 94-99.
[2] 文渊, 胡珊, 何浏伟. 硼泥碳化法制备碱式碳酸镁的工艺研究[J]. 材料导报, 2021, 35(Z1): 132-136.
[3] 鲁明远, 韩保红, 赫万恒, 倪新华, 于金凤. 孔隙对陶瓷基复合材料强度影响的研究进展[J]. 材料导报, 2021, 35(Z1): 180-185.
[4] 曾纪军, 高占远, 阮冬. 氧化石墨烯水泥基复合材料的性能及研究进展[J]. 材料导报, 2021, 35(Z1): 198-205.
[5] 朱家乐, 白羽婷, 冯思思. 氧化石墨烯/金属-有机框架复合材料在光催化中的应用[J]. 材料导报, 2021, 35(Z1): 315-321.
[6] 谭松波, 王响成, 李送送. 柔性含铅γ辐射屏蔽材料的制备及性能[J]. 材料导报, 2021, 35(Z1): 328-330.
[7] 朱冬, 张亮, 吴文恒, 卢林, 倪晓晴, 宋佳, 赵金猛, 朱文华, 顾孙望, 单小龙. 钛基复合材料激光选区熔化增材制造成形技术研究进展[J]. 材料导报, 2021, 35(Z1): 347-351.
[8] 杨康, 李东辉, 郭义林, 马刚, 耿昊, 李群芳, 薛继佳. 某型四座电动飞机复合材料机翼剪切性能试验与分析[J]. 材料导报, 2021, 35(Z1): 485-488.
[9] 王瑞杰, 郭建业, 宋寒, 郭慧, 李文静. 酚醛气凝胶多功能复合材料的设计与性能[J]. 材料导报, 2021, 35(Z1): 548-551.
[10] 张凯, 桂泰江, 吴连锋, 郭莉莎, 郭灵敏. 导热绝缘聚合物复合材料的研究进展[J]. 材料导报, 2021, 35(Z1): 571-575.
[11] 孙朝海, 黄炎, 杨康, 姬书得, 岳玉梅. 工装模具对复合材料件固化变形影响的有限元分析[J]. 材料导报, 2021, 35(Z1): 607-612.
[12] 丁叁叁, 刘克健. 高速列车用碳纤维复合材料结构损伤修复门槛值研究[J]. 材料导报, 2021, 35(Z1): 613-616.
[13] 武海鹏. 复合材料层合板阻尼性能的预测与分析[J]. 材料导报, 2021, 35(Z1): 617-620.
[14] 李磊, 刘晓莲, 王利媛, 康卫民, 庄旭品. 无机相拓扑结构对有机-无机复合质子交换膜性能的影响综述[J]. 材料导报, 2021, 35(Z1): 621-627.
[15] 谢贵堂, 张均, 姚明, 王宇川, 蒋国昌, 姜志国. 调湿材料的研究与应用现状[J]. 材料导报, 2021, 35(Z1): 634-638.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[3] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[4] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[5] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[6] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[7] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[8] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[9] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[10] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed