Please wait a minute...
材料导报  2025, Vol. 39 Issue (12): 24050009-9    https://doi.org/10.11896/cldb.24050009
  无机非金属及其复合材料 |
纳米颗粒和微生物相互作用过程中生物膜的形成机制与效应
张悦1,2, 管千慧1,2, 周政1,2, 陈全1,2, 吴敏1,2, 易鹏1,2,*
1 昆明理工大学环境科学与工程学院,昆明 650500
2 云南省土壤固碳与污染控制重点实验室,昆明 650500
The Mechanisms and Effects of Biofilm Formation in the Interaction Between Nanoparticles and Microorganisms
ZHANG Yue1,2, GUAN Qianhui1,2, ZHOU Zheng1,2, CHEN Quan1,2, WU Min1,2, YI Peng1,2,*
1 Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
2 Yunnan Provincial KeyLaboratory of Soil Carbon Sequestration and Pollution Control, Kunming 650500, China
下载:  全 文 ( PDF ) ( 52948KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纳米颗粒(Nanoparticles,NPs)在环境中的迁移转化和生物安全问题是环境领域的研究热点,其中NPs和微生物相互作用过程中生物膜的形成机制与效应是亟需解决的关键科学问题。微生物可以通过吸附和内化等物理化学方式使NPs粘附在其细胞表面或进入其细胞内部,这些NPs可能会引起微生物的应激保护反应从而刺激生物膜的形成,同时也会对生物膜产生毒性效应。本文主要从吸附作用和细胞内化总结了NPs与微生物的界面相互作用,并分析了NPs的性质、微生物的种类和环境条件对相互作用过程的制约;论述了生物膜的形成过程,剖析了NPs对生物膜的生长状态、代谢活性、群落组成和基因表达产生的影响;并进一步讨论了生物膜的形成对NPs的溶解腐蚀、表面钝化、稳定和团聚的影响。最后就多物种生物膜与NPs的相互作用机制、环境中NPs的长期毒性研究以及生物膜对NPs迁移行为的改变提出了展望。深入理解NPs与生物膜的相互作用及机制,可以为进一步研究NPs对环境及人类潜在毒性提供理论基础,从而对NPs做出更全面的风险评估。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张悦
管千慧
周政
陈全
吴敏
易鹏
关键词:  纳米颗粒  微生物  生物膜  胞外聚合物  相互作用    
Abstract: The migration, transformation, and biosafety issues of nanoparticles (NPs) in the environmentis a hot topic in environmental research field. The mechanisms and effects of biofilm formation in the interaction between NPs and microorganisms are the key scientific issues that need to be solved urgently. Microorganisms can cause NPs to adhere to their cell surface or enter their cells through physicochemical methods such as adsorption and internalization. These NPs may trigger stress protective responses in the microorganisms, stimulating biofilm formation, while also potentially exerting toxic effects on the biofilm. This review primarily summarizes the interface interactions between NPs and microorganisms, focusing on adsorption and intracellular uptake, analyzes how the properties of NPs, the types of microorganisms, and environmental conditions constrain the interaction process. Additionally, discusses the formation of biofilms, examining the impact of NPs on biofilm growth, metabolic activity, community composition, and gene expression. Furthermore, explores how biofilm formation influences the dissolution, corrosion, surface passivation, stability, and aggregation of NPs. Finally, the outlook is presented from the perspective of the interaction mechanisms of multi-species biofilms with NPs, the long-term toxicity of NPs in the environment, and the alterations in the migration behavior of NPs caused by biofilms. A deeper understanding of NPs-biofilm interactions and mechanisms shall provide a theoretical basis for further research on the potential environmental and human toxicity of NPs, enabling a more comprehensive risk assessment of NPs.
Key words:  nanoparticle    microorganism    biofilm    extracellular polymer    interaction
出版日期:  2025-06-25      发布日期:  2025-06-19
ZTFLH:  X172  
  X131  
基金资助: 国家自然科学基金(42277399;42477245)
通讯作者:  *易鹏,博士,昆明理工大学环境科学与工程学院讲师、硕士研究生导师。主要研究领域为环境持久性自由基的环境效应和功能以及碳材料的吸附。446839392@qq.com   
作者简介:  张悦,昆明理工大学环境科学与工程学院硕士研究生,在吴敏教授的指导下进行研究。目前主要研究领域为纳米颗粒与微生物的相互作用。
引用本文:    
张悦, 管千慧, 周政, 陈全, 吴敏, 易鹏. 纳米颗粒和微生物相互作用过程中生物膜的形成机制与效应[J]. 材料导报, 2025, 39(12): 24050009-9.
ZHANG Yue, GUAN Qianhui, ZHOU Zheng, CHEN Quan, WU Min, YI Peng. The Mechanisms and Effects of Biofilm Formation in the Interaction Between Nanoparticles and Microorganisms. Materials Reports, 2025, 39(12): 24050009-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050009  或          https://www.mater-rep.com/CN/Y2025/V39/I12/24050009
1 Ijaz I, Gilani E, Nazir A, et al. Green Chemistry Letters and Reviews, 2020, 13(3), 223.
2 Selmani A, Kovaević D, Bohinc K. Advances in Colloid and Interface Science, 2022, 303, 102640.
3 Auffan M, Rose J, Bottero J Y, et al. Nature Nanotechnol, 2009, 4(10), 634.
4 Xu Y Y, Ren L T, Ye Z X, et al. Materials Reports, 2024, 38(Z1), 384 (in Chinese).
许雨茵, 任蓝图, 叶芷欣, 等. 材料导报, 2024, 38(Z1), 384.
5 Ferdous Z, Nemmar A. International Journal of Molecular Sciences, 2020, 21(7), 2375.
6 Gondikas A P, Von Der Kammer F, Reed R B, et al. Environmental Science & Technology, 2014, 48(10), 5415.
7 Peng Q, Tang X, Dong W, et al. Antibiotics, 2022, 12(1), 12.
8 Thi M T T, Wibowo D, Rehm B H A. International Journal of Molecular Sciences, 2020, 21(22), 8671.
9 Desmau M, Carboni A, Le Bars M, et al. Frontiers in Environmental Science, 2020, 8, 82.
10 Maksimova Y G, Zorina A S. Applied Biochemistry and Microbiology, 2024, 60(1), 1.
11 Chwalibog A, Sawosz E, Hotowy A, et al. International Journal of Nanomedicine, 2010, 5, 1085.
12 Joshi A S, Singh P, Mijakovic I. International Journal of Molecular Sciences, 2020, 21(20), 7658.
13 Borthakur P, Hussain N, Darabdhara G, et al. Journal of Environmental Chemical Engineering, 2018, 6(4), 3933.
14 Khan S S, Srivatsan P, Vaishnavi N, et al. Journal of Hazardous Materials, 2011, 192(1), 299.
15 Li C C, Wang Y J, Dang F, et al. Journal of Hazardous Materials, 2016, 308, 21.
16 Ma S, Lin D. Environmental Science-Processes & Impacts, 2013, 15(1), 145.
17 Brayner R, Ferrari-Iliou R, Brivois N, et al. Naon Letters, 2006, 6(4), 866.
18 Huang Z, Zheng X, Yan D, et al. Langmuir, 2008, 24(8), 4140.
19 Cervantes-Avilés P, Barriga-Castro E D, Palma-Tirado L, et al. Microscopy Research & Technique, 2017, 80(10), 1103.
20 Evans C W, Fitzgerald M, Clemons T D, et al. ACS Nano, 2011, 5(11), 8640.
21 Cho E C, Xie J W, Wurm P A, et al. Nano Letters, 2009, 9(3), 1080.
22 Skandani A A, Zeineldin R, Al-Haik M. Langmuir, 2012, 28(20), 7872.
23 Costa V H, Gitz-Francois J J, Schiffelers R M, et al. Journal of Controlled Release, 2017, 266, 100.
24 Mirzajani F, Ghassempour A, Aliahmadi A, et al. Research in Microbiology, 2011, 162(5), 542.
25 Kumar A, Pandey A K, Singh S S, et al. Chemosphere, 2011, 83(8), 1124.
26 Qi H Y, Wang W B, Zheng Y, et al. Microbiology China, 2013, 40(4), 677 (in Chinese).
戚韩英, 汪文斌, 郑昱, 等. 微生物学通报, 2013, 40(4), 677.
27 Schwegmann H, Feitz A J, Frimmel F H. Journal of Colloid and Interface Science, 2010, 347(1), 43.
28 Tripathi S, Champagne D, Tufenkji N. Environmental Science & Technology, 2012, 46(13), 6942.
29 Mitzel M R, Sand S, Whalen J K, et al. Water Research, 2016, 92, 113.
30 Habimana O, Steenkeste K, Fontaine-Aupart M P, et al. Applied and Environmental Microbiology, 2011, 77(1), 367.
31 Canton I, Battaglia G. Chemical Society Reviews, 2012, 41(7), 2718.
32 Joshi N, Ngwenya B T, French C E. Journal of Hazardous Materials, 2012, 241, 363.
33 Jing H, Mezgebe B, Aly Hassan A, et al. Bioresource Technology, 2014, 161, 109.
34 Wang Y, Gélabert A, Michel F M, et al. Geochimica et Cosmochimica Acta, 2016, 188, 368.
35 Abbas Q, Yousaf B, Amina, et al. Environment International, 2020, 138, 105646.
36 Chang T R, Khort A, Saeed A, et al. Journal of Hazardous Materials, 2023, 445, 130586.
37 Li Z Q, Greden K, Alvarez P J J, et al. Environmental Science & Technology, 2010, 44(9), 3462.
38 Lyu P, Li H L, Xu Y, et al. Environment Science, 2022, 43(10), 4502 (in Chinese).
吕萍, 李慧莉, 徐勇, 等. 环境科学, 2022, 43(10), 4502.
39 Canfora L, Malusà E, Salvati L, et al. Applied Soil Ecology, 2015, 88, 50.
40 Lazcano C, Gómez-Brandón M, Revilla P, et al. Biology and Fertility of Soils, 2012, 49(6), 723.
41 Flemming H C, Wuertz S. Nature Reviews Microbiology, 2019, 17(4), 247.
42 Zhao A, Sun J, Liu Y. Frontiers in Cellular and Infection Microbiology, 2023, 13, 1137947.
43 Flemming H C, Wingender J, Szewzyk U, et al. Nature Reviews Micro-biology, 2016, 14(9), 563.
44 Muhammad M H, Idris A L, Fan X, et al. Frontiers in Microbiology, 2020, 11, 928.
45 Sauer K, Stoodley P, Goeres D M, et al. Nature Reviews Microbiology, 2022, 20(10), 608.
46 Ciofu O, Moser C, Jensen P O, et al. Nature Reviews Microbiology, 2022, 20(10), 621.
47 Fulaz S, Vitale S, Quinn L, et al. Trends in Microbiology, 2019, 27(11), 915.
48 Tian F, Li J, Nazir A, et al. Infection and Drug Resistance, 2021, 14, 205.
49 Mahto K U, Kumari S, Das S. Critical Reviews in Biochemistry and Molecular Biology, 2022, 57(3), 305.
50 Wu Y, Cai P, Jing X, et al. Environment International, 2019, 132, 105116.
51 Halan B, Buehler K, Schmid A. Trends in Biotechnology, 2012, 30(9), 453.
52 You G, Hou J, Xu Y, et al. Bioresource Technology, 2015, 194, 91.
53 Sadiq F A, Burmolle M, Heyndrickx M, et al. Critical Reviews in Microbiology, 2021, 47(3), 338.
54 Uruen C, Chopo-Escuin G, Tommassen J, et al. Antibiotics (Basel), 2020, 10, 3.
55 Zhu J, Wang J, Chen Y P, et al. Journal of Hazardous Materials, 2022, 432, 128709.
56 Hathroubi S, Mekni M A, Domenico P, et al. Microbial Drug Resistance, 2017, 23(2), 147.
57 Abriat C, Gazil O, Heuzey M C, et al. ACS Applied Materials & Interfaces, 2021, 13(30), 35356.
58 Choi O, Yu C P, Esteban Fernandez G, et al. Water Research, 2010, 44(20), 6095.
59 Fabrega J, Fawcett S R, Renshaw J C, et al. Environmental Science & Technology, 2009, 43(19), 7285.
60 Sengul A B, Asmatulu E. Environmental Chemistry Letters, 2022, 18(5), 1659.
61 Duran N, Duran M, De Jesus M B, et al. Nanomedicine, 2016, 12(3), 789.
62 Zhang B, Yu P, Wang Z, et al. Environmental Science & Technology, 2020, 54(19), 12358.
63 Ouyang K, Mortimer M, Holden P A, et al. Environment International, 2020, 137, 105485.
64 Yang Y, Alvarez P J J. Environmental Science & Technology Letters, 2015, 2(8), 221.
65 Alizadeh S, Ghoshal S, Comeau Y. Science of the Total Environment, 2019, 647, 1199.
66 Miao L, Wang C, Hou J, et al. Bioresource Technology, 2016, 216, 537.
67 Hou J, Miao L, Wang C, et al. Journal of Hazardous Materials, 2014, 276, 164.
68 Miao L, Wang P, Hou J, et al. Science of the Total Environment, 2019, 653, 705.
69 Awasthi A, Sharma P, Jangir L, et al. Materials Science & Engineering C, 2020, 113, 111021.
70 Bondarenko L, Kovel E, Kydralieva K, et al. Nanomaterials, 2020, 10(8), 1499.
71 Miao L, Wang C, Hou J, et al. Science of the Total Environment, 2017, 579, 588.
72 Yang J L, Li Y F, Liang X, et al. Scientific Reports, 2016, 6, 37406.
73 Sheng Y, Chen Z, Wu W, et al. Drug Discovery Today, 2023, 28(2), 103455.
74 Sahli C, Moya S E, Lomas J S, et al. Theranostics, 2022, 12(5), 2383.
75 Means N, Elechalawar C K, Chen W R, et al. Molecular Aspects of Medicine, 2022, 83, 100993.
76 Tam K H, Djurišić A B, Chan C M N, et al. Thin Solid Films, 2008, 516(18), 6167.
77 Feng K, Zhang Z, Cai W, et al. Molecular Ecology, 2017, 26(21), 6170.
78 Philippot L, Spor A, Henault C, et al. ISME Journal, 2013, 7(8), 1609.
79 Bao S, Wang H, Zhang W, et al. Environmental Pollution, 2016, 219, 696.
80 Pokhrel L R, Dubey B, Scheuerman P R. Environmental Science & Technology, 2013, 47(22), 12877.
81 Zhao J, Wang Z, Dai Y, et al. Water Research, 2013, 47(12), 4169.
82 Brooks A N, Turkarslan S, Beer K D, et al. Wiley Interdisciplinary Reviews-Systems Biology and Medicine, 2011, 3(5), 544.
83 Singh N, Paknikar K M, Rajwade J. Environmental Science:Nano, 2019, 6(6), 1812.
84 Phan D C, Pasha A B M T, Carwile N, et al. Environmental Engineering Science, 2020, 37(5), 328.
85 Zakaria B S, Dhar B R. Science of the Total Environment, 2020, 734, 139395.
86 Li W W, Yu H Q. Bioresource Technology, 2014(160), 15.
87 Li N, Jin Z H, Li T L, et al. Environment Science, 2011, 32(6), 1620 (in Chinese).
李宁, 金朝晖, 李铁龙, 等. 环境科学, 2011, 32(6), 1620.
88 Tourney J, Ngwenya B T. Chemical Geology, 2014, 386, 115.
89 Fang L, Wei X, Cai P, et al. Bioresource Technology, 2011, 102(2), 1137.
90 Avellan A, Simonin M, Mcgivney E, et al. Nature Nanotechnology, 2018, 13(11), 1072.
91 Lowry G V, Gregory K B, Apte S C, et al. Environmental Science & Technology, 2012, 46(13), 6893.
92 Reidy B, Haase A, Luch A, et al. Materials (Basel), 2013, 6(6), 2295.
93 Kaegi R, Voegelin A, Sinnet B, et al. Environmental Science & Technology, 2011, 45(9), 3902.
94 Liu J Y, Sonshine D A, Shervani S, et al. ACS Nano, 2010, 4(11), 6903.
95 Glover R, Miller J, Hutchison J. ACS Nano, 2011, 5(11), 8950.
96 Wheeler K E, Chetwynd A J, Fahy K M, et al. Nature Nanotechnology, 2021, 16(6), 617.
97 He C S, Ding R R, Chen J Q, et al. Water Research, 2020, 178, 115817.
98 Malejko J, Szymańska N, Bajguz A, et al. Journal of Analytical Atomic Spectrometry, 2019, 34(7), 1485.
99 Zhang P, Xu X Y, Zhang X L, et al. Journal of Hazardous Materials, 2021, 409, 124526.
100 Chekli L, Zhao Y X, Tijing L D, et al. Journal of Hazardous Materials, 2015, 284, 190.
101 Fabrega J, Renshaw J, Lead J. Environmental Science & Technology, 2009, 43(23), 9004.
[1] 李克亮, 杜建, 陈爱玖, 韩小燕. 污水管道混凝土微生物腐蚀机理、影响因素和模拟试验方法综述[J]. 材料导报, 2025, 39(7): 23120043-11.
[2] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[3] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[4] 张芮, 侯福星, 高瑞晓, 荣辉, 王剑云. 表面粗糙度对砂浆的MICP表面防护性能的影响[J]. 材料导报, 2025, 39(11): 24050077-6.
[5] 孙磊, 何鹏, 张亮, 张墅野, 王文昊, 张潘杰. TiN纳米颗粒增强Sn焊点的性能与组织研究[J]. 材料导报, 2025, 39(10): 24030018-4.
[6] 张俊杰, 陈燕强, 钱春香. 水泥基材料中Ca2+对矿化微生物的碳酸酐酶产量、活性和矿化的影响[J]. 材料导报, 2024, 38(8): 22030269-6.
[7] 陈进, 李默涵, 阮文琳, 孙涛, 刘晓英. SiO2纳米颗粒在润滑领域中的研究与应用现状[J]. 材料导报, 2024, 38(5): 23080225-9.
[8] 裴文霞, 赵国仙, 丁浪勇, 方堃, 王帆, 刘冉冉. 温度对管线钢在SRB/CO2环境中的腐蚀影响[J]. 材料导报, 2024, 38(23): 23070058-8.
[9] 刘娟红, 安树好, 陈德平, 张月月. 融合石膏组分和微纳米结构“双基因”调控的铁尾矿粉无熟料固结体力学性能[J]. 材料导报, 2024, 38(21): 23010110-10.
[10] 李爽, 黄明, 崔明娟, 胡鑫杭, 许凯, 姜启武. 纳米四氧化三铁对微生物诱导碳酸钙沉淀的作用效果与机理研究[J]. 材料导报, 2024, 38(20): 23040018-8.
[11] 胥聪敏, 李雪丽, 朱文胜, 朱世东, 杨兴, 高豪然, 孙姝雯. D-氨基酸增强型杀菌剂对三种金属材料腐蚀行为的影响[J]. 材料导报, 2024, 38(20): 23090099-6.
[12] 高浩, 魏中华, 邓佳, 陈涛, 赵海利. PEGMA刷微图案诱导聚苯乙烯纳米颗粒阵列化[J]. 材料导报, 2024, 38(14): 23020080-7.
[13] 侯福星, 白一鸣, 沈頔, 王剑云. 微生物自修复混凝土载体材料研究进展[J]. 材料导报, 2024, 38(13): 23040048-15.
[14] 彭丽云, 陈星, 齐吉琳, 朱同宇. 微生物加固粉土的强度特性及加固机理研究[J]. 材料导报, 2024, 38(13): 23010024-7.
[15] 肖瑶, 邓华锋, 李建林, 熊雨, 程雷. 利用Triton X-100提升巴氏芽孢杆菌脲酶活性的效果[J]. 材料导报, 2024, 38(1): 23060069-7.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] LI Beigang, WANG Min. High Efficient Adsorption of Dyes by Fe/CTS/AFA Composite[J]. Materials Reports, 2018, 32(10): 1606 -1611 .
[8] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[9] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[10] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed