Please wait a minute...
材料导报  2025, Vol. 39 Issue (11): 24060225-10    https://doi.org/10.11896/cldb.24060225
  无机非金属及其复合材料 |
应变玻璃统一形成判据的研究进展
范孟娜, 陶雪飞*, 宗洪祥, 丁向东
西安交通大学金属材料强度国家重点实验室,西安 710049
Research Progress of the Unified Formation Criterion of Strain Glass
FAN Mengna, TAO Xuefei*, ZONG Hongxiang, DING Xiangdong
State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049, China
下载:  全 文 ( PDF ) ( 43927KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 应变玻璃作为一种新型的铁性功能玻璃,可以通过在形状记忆合金中引入缺陷获得,在微观上表现为长程无序的纳米马氏体畴冻结态。同时应变玻璃作为一种形状记忆合金,具有形状记忆效应和超弹性行为,获得了人们的关注,并且被广泛地应用在手机、医疗等日常生活和航空航天等高科技领域。此外,与传统的马氏体合金相比,应变玻璃合金具有Invar效应和智能阻尼效应等奇异性能。应变玻璃转变作为一种全新的结构相变现象,研究发现不仅点缺陷可以引起应变玻璃转变,而且位错和析出物也可以引起应变玻璃转变,这三种应变玻璃转变具有统一的微观物理图像。本文主要总结了点缺陷型应变玻璃的形成判据,并且通过分子动力学模拟的方法成功复现了位错型应变玻璃的转变过程以及形成判据,据此得到了析出物型应变玻璃的形成判据,最终建立了多种应变玻璃形成条件的统一判据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范孟娜
陶雪飞
宗洪祥
丁向东
关键词:  应变玻璃  应变网络  缺陷  分子动力学  微观机制    
Abstract: Strain glass, as a new type of ferroic functional glass, can be obtained by introducing defects into shape memory alloys. Microscopically, it manifests as a frozen state of long-range disordered nano-martensitic domains. As a shape memory alloy, strain glass exhibits shape me-mory effects and superelastic behavior, garnering widespread attention. It has been widely applied in everyday life, such as in mobile phones and medical devices, as well as in high-tech fields like aerospace. Additionally, compared to traditional martensitic alloys, strain glass alloys possess unique properties such as the Invar effect and smart damping effect. As a brand-new structural phase transition phenomenon, it has been disco-vered that not only point defects can induce strain glass transitions, but dislocations and precipitates can also cause these transitions. These three types of strain glass transitions share a unified microscopic physical image. In this paper, the formation criterion of point defect strain glass is summarized, and the transformation process of dislocation strain glass and its formation criterion are successfully reproduced by molecular dynamics simulation method, and the formation criterion of precipitated strain glass is obtained accordingly, and the unified criterion of various strain glass formation conditions is finally established.
Key words:  strain glass    strain network    defect    molecular dynamics    microscopic mechanism
发布日期:  2025-05-29
ZTFLH:  TG139+.6  
基金资助: 国家自然科学基金(51931004)
通讯作者:  *陶雪飞,博士,目前主要研究领域为应变玻璃的微观转变机制。taoxuefei@stu.xjtu.edu.cn   
作者简介:  范孟娜,西安交通大学材料科学与工程学院硕士研究生,在宗洪祥教授的指导下进行研究。目前主要研究领域为W颗粒对3D打印NiTi形状记忆合金的微观结构和性能的影响。
引用本文:    
范孟娜, 陶雪飞, 宗洪祥, 丁向东. 应变玻璃统一形成判据的研究进展[J]. 材料导报, 2025, 39(11): 24060225-10.
FAN Mengna, TAO Xuefei, ZONG Hongxiang, DING Xiangdong. Research Progress of the Unified Formation Criterion of Strain Glass. Materials Reports, 2025, 39(11): 24060225-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060225  或          https://www.mater-rep.com/CN/Y2025/V39/I11/24060225
1 Sarkar S, Ren X, Otsuka K. Physical Review Letters, 2005, 95(20), 205702.
2 Ren X. Physica Status Solidi (B), 2014, 251(10), 1982.
3 Ji Y, Wang D, Wang Y, et al. npj Computational Materials, 2017, 3(1), 43.
4 Mauro J C, Smedskjaer M M. Journal of Non-crystalline Solids, 2014, 396, 41.
5 Bhowmik R, Ranganathan R. Journal of Magnetism and Magnetic Materials, 2002, 248(1), 101.
6 Zhang R, Li J F, Viehland D. Journal of the American Ceramic Society, 2004, 87(5), 864.
7 Hao C, Jiang J, Duan D. Materials Today Communications, 2024, 38, 107813.
8 Zhou Z, Guo Z, Johnson W L, et al. Acta Materialia, 2023, 258, 119233.
9 Ashmore B, Young M L, Giri A. Shape Memory and Superelasticity, 2023, 9(1), 87.
10 Qian Y, Zhang G, Wang W, et al. Scripta Materialia, 2024, 248, 116148.
11 Sun X, Cong D, Ren Y, et al. Acta Materialia, 2020, 183, 11.
12 Ren S, Liu C, Chen X, et al. Scripta Materialia, 2020, 177, 11.
13 Driver S L, Salje E K H, Howard C J, et al. Physical Review B, 2020, 102(1), 014105.
14 Tao X, Zong H. Journal of Physics:Condensed Matter, 2023, 35(46), 465402.
15 Kartha S, Castán T, Krumhansl J A, et al. Physical Review Letters, 1991, 67(25), 3630.
16 Kartha S, Krumhansl J A, Sethna J P, et al. Physical Review B, 1995, 52(2), 803.
17 Semenovskaya S, Khachaturyan A. Acta Materialia, 1997, 45(10), 4367.
18 Liu D, Gou J, Xu Z, et al. Acta Materialia, 2023, 248, 118768.
19 Honma T, Takei H. Journal of the Japan Institute of Metals, 1975, 39(2), 175.
20 Kakeshita T, Fukuda T, Tetsukawa H, et al. Japanese Journal of Applied Physics, 1998, 37(5R), 2535.
21 Somsen C, Zähres H, Kästner J, et al. Materials Science and Enginee-ring:A, 1999, 273, 310.
22 Li R, Santiago J, Salas D, et al. Physical Review B, 2023, 107(14), 144207.
23 Zhao L, Tao X, Zong H, et al. Acta Materialia, 2024, 274, 120030.
24 Zhou Y, Xue D, Tian Y, et al. Physical Review Letters, 2014, 112(2), 025701.
25 Wang D, Ji Y, Ren X, et al. Annual Review of Materials Research, 2022, 52(1), 159.
26 Zhang J, Wang Y, Ding X, et al. Physical Review B, 2011, 83(17), 174204.
27 Wang Y, Zhou Y M, Ji Y C, et al. Materials China, 2016, 35(6), 401 (in Chinese).
王宇, 周玉美, 纪元超, 等. 中国材料进展, 2016, 35(6), 401.
28 Daróczi L, Kamel S M, Tahara M, et al. Intermetallics, 2024, 173, 108432.
29 Yao Y, Yang Y, Ren S, et al. Europhysics Letters, 2012, 100(1), 17004.
30 Niitsu K, Omori T, Kainuma R. Applied Physics Letters, 2013, 102(23), 231915.
31 Tang Z, Wang Y, Liao X, et al. Journal of Alloys and Compounds, 2015, 622, 622.
32 Lloveras P, Castán T, Porta M, et al. Physical Review Letters, 2008, 100(16), 165707.
33 Vasseur R, Xue D, Zhou Y, et al. Physical Review B, 2012, 86(18), 184103.
34 Vasseur R, Lookman T. Physical Review B, 2010, 81(9), 094107.
35 Su Y, Liang C, Sun X, et al. Acta Materialia, 2023, 246, 118697.
36 Lloveras P, Castán T, Porta M, et al. Physical Review B, 2009, 80(5), 054107.
37 Wang Y, Ren X, Otsuka K, et al. Physical Review B, 2007, 76(13), 132201.
38 Lin H, Ren S, Dang P, et al. Scripta Materialia, 2023, 224, 115118.
39 Greer A L, Ma E. MRS Bulletin, 2007, 32(8), 611.
40 Li Y, Yu P, Bai H. Journal of Applied Physics, 2008, 104(1), 013520.
41 Dmowski W, Iwashita T, Chuang C P, et al. Physical Review Letters, 2010, 105(20), 205502.
42 Bert F, Dupuis V, Vincent E, et al. Physical Review Letters, 2004, 92(16), 167203.
43 Zhang L L, Huang Y N. Scientific Reports, 2020, 10(1), 5060.
44 Zong H, Wu H, Tao X, et al. Physical Review Letters, 2019, 123(1), 015701.
45 Dong T, Liang C, Su Y, et al. Acta Materialia, 2023, 245, 118634.
46 Barsch G, Krumhansl J. Metallurgical Transactions A, 1988, 19, 761.
47 Cai W, Sills R B, Barnett D M, et al. Journal of the Mechanics and Physics of Solids, 2014, 66, 154.
48 Otsuka K, Ren X. Progress in Materials Science, 2005, 50(5), 511.
49 Cai W, Tan C, Shen T, et al. Journal of Alloys and Compounds, 2007, 438(1-2), 30.
50 Fathi M B, Kanjouri F, Farhadi G. International Journal of Modern Physics B, 2015, 29(21), 1550152.
51 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817.
52 Bakulin A V, Spiridonova T I, Kulkova S E. Computational Materials Science, 2018, 148, 1.
53 Zhang Z, Elkedim O, Balcerzak M, et al. International Journal of Hydrogen Energy, 2017, 42(37), 23751.
54 Senkov O N, Miracle D B. Journal of Non-crystalline Solids, 2003, 317(1-2), 34.
55 Rai D K, Yadav T P, Subrahmanyam V S, et al. Journal of Alloys and Compounds, 2009, 482(1-2), 28.
56 Ren X, Miura N, Zhang J, et al. Materials Science and Engineering:A, 2001, 312(1-2), 196.
57 Chen X Q, Fu C L, Morris J R. Intermetallics, 2010, 18(5), 998.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 吴学虎, 孙立贤, 徐芬, 李彬, 方淞文, 张靖, 陈翔, 宋领君, 卢俊铭, 高源, 杜毛湛, 徐如丹. 具有P和S双空位的镍钴纳米花复合材料用作超级电容器电极的研究[J]. 材料导报, 2025, 39(7): 24030138-7.
[3] 周乃吉, 吴修胜, 温红娟, 施思嘉, 曹菊芳. 增强钛酸铋钠基陶瓷储能研究进展[J]. 材料导报, 2025, 39(6): 24010096-17.
[4] 李门, 李天鹏, 郭爱强, 刘建国, 高欣宝. vG和Cu/vG体系对H2O吸附的第一性原理研究[J]. 材料导报, 2025, 39(6): 23120052-5.
[5] 李雷, 孙东旭, 柴玉莹, 谢飞, 吴明. 剥离涂层下含缺陷管道腐蚀规律的瞬态数值模拟研究[J]. 材料导报, 2025, 39(5): 23010094-9.
[6] 韦浪浪, 田秀刚, 梁健, 苗斌, 杨峰, 李杨, 郑士建. 基于聚焦离子束切割制样的热镀锌汽车钢板漏镀缺陷结构表征与成因分析[J]. 材料导报, 2025, 39(4): 23080246-7.
[7] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[8] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[9] 孙斐, 赵洪峰, 缪奎. 钆掺杂的高非线性和低漏流SnO2基压敏电阻材料[J]. 材料导报, 2025, 39(2): 23110256-4.
[10] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[11] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[12] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[13] 李龙飞, 郑永泉, 万旺军, 徐至宏, 汪清利, 王琛, 贺馨平, 夏新辉, 夏阳. 锂离子电池缺陷检测技术及失效机理分析研究进展[J]. 材料导报, 2025, 39(11): 24100016-9.
[14] 耿瑞文, 周星辰, 田助新, 谢启明, 李立军, 吴海华, 双佳俊, 杨志豇. 6H-SiC纳米磨削机理的分子动力学研究[J]. 材料导报, 2025, 39(10): 24080001-8.
[15] 刘志坦, 吴溢凡, 李玉刚, 王纯, 曹炼博, 成先明, 杨可. 掺氢天然气管道氢致损伤及检测技术研究现状[J]. 材料导报, 2025, 39(10): 24040041-8.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed