Abstract: Strain glass, as a new type of ferroic functional glass, can be obtained by introducing defects into shape memory alloys. Microscopically, it manifests as a frozen state of long-range disordered nano-martensitic domains. As a shape memory alloy, strain glass exhibits shape me-mory effects and superelastic behavior, garnering widespread attention. It has been widely applied in everyday life, such as in mobile phones and medical devices, as well as in high-tech fields like aerospace. Additionally, compared to traditional martensitic alloys, strain glass alloys possess unique properties such as the Invar effect and smart damping effect. As a brand-new structural phase transition phenomenon, it has been disco-vered that not only point defects can induce strain glass transitions, but dislocations and precipitates can also cause these transitions. These three types of strain glass transitions share a unified microscopic physical image. In this paper, the formation criterion of point defect strain glass is summarized, and the transformation process of dislocation strain glass and its formation criterion are successfully reproduced by molecular dynamics simulation method, and the formation criterion of precipitated strain glass is obtained accordingly, and the unified criterion of various strain glass formation conditions is finally established.
1 Sarkar S, Ren X, Otsuka K. Physical Review Letters, 2005, 95(20), 205702. 2 Ren X. Physica Status Solidi (B), 2014, 251(10), 1982. 3 Ji Y, Wang D, Wang Y, et al. npj Computational Materials, 2017, 3(1), 43. 4 Mauro J C, Smedskjaer M M. Journal of Non-crystalline Solids, 2014, 396, 41. 5 Bhowmik R, Ranganathan R. Journal of Magnetism and Magnetic Materials, 2002, 248(1), 101. 6 Zhang R, Li J F, Viehland D. Journal of the American Ceramic Society, 2004, 87(5), 864. 7 Hao C, Jiang J, Duan D. Materials Today Communications, 2024, 38, 107813. 8 Zhou Z, Guo Z, Johnson W L, et al. Acta Materialia, 2023, 258, 119233. 9 Ashmore B, Young M L, Giri A. Shape Memory and Superelasticity, 2023, 9(1), 87. 10 Qian Y, Zhang G, Wang W, et al. Scripta Materialia, 2024, 248, 116148. 11 Sun X, Cong D, Ren Y, et al. Acta Materialia, 2020, 183, 11. 12 Ren S, Liu C, Chen X, et al. Scripta Materialia, 2020, 177, 11. 13 Driver S L, Salje E K H, Howard C J, et al. Physical Review B, 2020, 102(1), 014105. 14 Tao X, Zong H. Journal of Physics:Condensed Matter, 2023, 35(46), 465402. 15 Kartha S, Castán T, Krumhansl J A, et al. Physical Review Letters, 1991, 67(25), 3630. 16 Kartha S, Krumhansl J A, Sethna J P, et al. Physical Review B, 1995, 52(2), 803. 17 Semenovskaya S, Khachaturyan A. Acta Materialia, 1997, 45(10), 4367. 18 Liu D, Gou J, Xu Z, et al. Acta Materialia, 2023, 248, 118768. 19 Honma T, Takei H. Journal of the Japan Institute of Metals, 1975, 39(2), 175. 20 Kakeshita T, Fukuda T, Tetsukawa H, et al. Japanese Journal of Applied Physics, 1998, 37(5R), 2535. 21 Somsen C, Zähres H, Kästner J, et al. Materials Science and Enginee-ring:A, 1999, 273, 310. 22 Li R, Santiago J, Salas D, et al. Physical Review B, 2023, 107(14), 144207. 23 Zhao L, Tao X, Zong H, et al. Acta Materialia, 2024, 274, 120030. 24 Zhou Y, Xue D, Tian Y, et al. Physical Review Letters, 2014, 112(2), 025701. 25 Wang D, Ji Y, Ren X, et al. Annual Review of Materials Research, 2022, 52(1), 159. 26 Zhang J, Wang Y, Ding X, et al. Physical Review B, 2011, 83(17), 174204. 27 Wang Y, Zhou Y M, Ji Y C, et al. Materials China, 2016, 35(6), 401 (in Chinese). 王宇, 周玉美, 纪元超, 等. 中国材料进展, 2016, 35(6), 401. 28 Daróczi L, Kamel S M, Tahara M, et al. Intermetallics, 2024, 173, 108432. 29 Yao Y, Yang Y, Ren S, et al. Europhysics Letters, 2012, 100(1), 17004. 30 Niitsu K, Omori T, Kainuma R. Applied Physics Letters, 2013, 102(23), 231915. 31 Tang Z, Wang Y, Liao X, et al. Journal of Alloys and Compounds, 2015, 622, 622. 32 Lloveras P, Castán T, Porta M, et al. Physical Review Letters, 2008, 100(16), 165707. 33 Vasseur R, Xue D, Zhou Y, et al. Physical Review B, 2012, 86(18), 184103. 34 Vasseur R, Lookman T. Physical Review B, 2010, 81(9), 094107. 35 Su Y, Liang C, Sun X, et al. Acta Materialia, 2023, 246, 118697. 36 Lloveras P, Castán T, Porta M, et al. Physical Review B, 2009, 80(5), 054107. 37 Wang Y, Ren X, Otsuka K, et al. Physical Review B, 2007, 76(13), 132201. 38 Lin H, Ren S, Dang P, et al. Scripta Materialia, 2023, 224, 115118. 39 Greer A L, Ma E. MRS Bulletin, 2007, 32(8), 611. 40 Li Y, Yu P, Bai H. Journal of Applied Physics, 2008, 104(1), 013520. 41 Dmowski W, Iwashita T, Chuang C P, et al. Physical Review Letters, 2010, 105(20), 205502. 42 Bert F, Dupuis V, Vincent E, et al. Physical Review Letters, 2004, 92(16), 167203. 43 Zhang L L, Huang Y N. Scientific Reports, 2020, 10(1), 5060. 44 Zong H, Wu H, Tao X, et al. Physical Review Letters, 2019, 123(1), 015701. 45 Dong T, Liang C, Su Y, et al. Acta Materialia, 2023, 245, 118634. 46 Barsch G, Krumhansl J. Metallurgical Transactions A, 1988, 19, 761. 47 Cai W, Sills R B, Barnett D M, et al. Journal of the Mechanics and Physics of Solids, 2014, 66, 154. 48 Otsuka K, Ren X. Progress in Materials Science, 2005, 50(5), 511. 49 Cai W, Tan C, Shen T, et al. Journal of Alloys and Compounds, 2007, 438(1-2), 30. 50 Fathi M B, Kanjouri F, Farhadi G. International Journal of Modern Physics B, 2015, 29(21), 1550152. 51 Takeuchi A, Inoue A. Materials Transactions, 2005, 46(12), 2817. 52 Bakulin A V, Spiridonova T I, Kulkova S E. Computational Materials Science, 2018, 148, 1. 53 Zhang Z, Elkedim O, Balcerzak M, et al. International Journal of Hydrogen Energy, 2017, 42(37), 23751. 54 Senkov O N, Miracle D B. Journal of Non-crystalline Solids, 2003, 317(1-2), 34. 55 Rai D K, Yadav T P, Subrahmanyam V S, et al. Journal of Alloys and Compounds, 2009, 482(1-2), 28. 56 Ren X, Miura N, Zhang J, et al. Materials Science and Engineering:A, 2001, 312(1-2), 196. 57 Chen X Q, Fu C L, Morris J R. Intermetallics, 2010, 18(5), 998.