Please wait a minute...
材料导报  2025, Vol. 39 Issue (10): 24080001-8    https://doi.org/10.11896/cldb.24080001
  无机非金属及其复合材料 |
6H-SiC纳米磨削机理的分子动力学研究
耿瑞文1, 周星辰2, 田助新2,*, 谢启明3, 李立军2, 吴海华1, 双佳俊2, 杨志豇2
1 三峡大学石墨增材制造技术与装备湖北省工程研究中心,湖北 宜昌 443002
2 三峡大学机械与动力学院,湖北 宜昌 443002
3 昆明物理研究所,昆明 650223
Study on the Nano-grinding Mechanism of 6H-SiC Based on Molecular Dynamics
GENG Ruiwen1, ZHOU Xingchen2, TIAN Zhuxin2,*, XIE Qiming3, LI Lijun2, WU Haihua1, SHUANG Jiajun2, YANG Zhijiang2
1 Hubei Engineering Research Center of Graphite Additive Manufacturing Technology and Equipment, China Three Gorges University, Yichang 443002, Hubei, China
2 College of Mechanical and Power Engineering, China Three Gorges University, Yichang 443002, Hubei, China
3 Kunming Institute of Physics, Kunming 650223, China
下载:  全 文 ( PDF ) ( 36219KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 6H-SiC作为先进半导体材料的代表,具有出色的物理性能和化学稳定性,在光电子、航空航天等高新技术产业中起着关键作用。高硬度和低断裂韧性的物理特性使6H-SiC在超精密加工过程中充满挑战。因此,本工作采用分子动力学模拟的方法,探究了6H-SiC在不同磨粒形状(球形、圆台形、四棱台形)下的纳米磨削行为,并深入分析了磨削深度对纳米磨削特征的影响。结果表明:四棱台形磨粒在材料去除效率方面表现最佳,但伴随着最大的亚表面损伤;在较深的磨削条件下球形磨粒的材料去除率超过了圆台形磨粒,并且亚表面损伤小。此外,随着磨削深度的增加,材料去除机制发生转变,磨削力和磨削温度也有所增加,同时磨粒形状对磨削质量的影响也更加显著。研究结果为6H-SiC等硬脆性材料工艺参数优化提供了理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
耿瑞文
周星辰
田助新
谢启明
李立军
吴海华
双佳俊
杨志豇
关键词:  6H-SiC  分子动力学  纳米磨削  磨削深度  磨粒形状  亚表面损伤    
Abstract: 6H-SiC, as a representative of advanced semiconductor materials, exhibits outstanding physical properties and chemical stability, playing a pivotal role in high-tech industries such as optoelectronics and aerospace. Its high hardness and low fracture toughness present a great challenge in ultra-precision machining. Consequently, this study employs molecular dynamics simulation to investigate the nano-grinding behavior of 6H-SiC under different abrasive shapes (spherical, truncated cone, quadrangular frustum pyramid) and analyzes the influence of grinding depth on nano-grinding characteristics comprehensively. The results indicated that quadrangular frustum pyramid abrasives demonstrate optimal material removal efficiency, albeit accompanied by the largest subsurface damage. Under deeper grinding conditions, the spherical abrasive particles exhibit a material removal rate that surpasses that of the truncated cone particles, and they induce less subsurface damage. Furthermore, as grin-ding depth increases, a transition of the material removal mechanism occurrs, accompanied by increased grinding force and temperature, while the impact of abrasive shape on grinding quality becomes more pronounced. These findings provide a theoretical foundation for optimizing processing parameters of hard brittle materials like 6H-SiC.
Key words:  6H-SiC    molecular dynamics    nano-grinding    grinding depth    grain shape    subsurface damage
出版日期:  2025-05-25      发布日期:  2025-05-13
ZTFLH:  O77  
基金资助: 湖北省技术创新专项重大项目(2019AAA164);三峡大学人才引进项目(2022Y0037);水电机械设备设计与维护湖北省重点实验室开放基金(2023KJX04)
通讯作者:  *田助新,博士,三峡大学机械与动力学院副教授、硕士研究生导师。目前从事精密加工工艺及设备研发等方面的研究工作。zhuxintian1987@sina.com   
作者简介:  耿瑞文,博士,三峡大学机械与动力学院讲师。目前主要从事硬脆性材料高效低损伤场辅助磨削和超精密切削研究工作。
引用本文:    
耿瑞文, 周星辰, 田助新, 谢启明, 李立军, 吴海华, 双佳俊, 杨志豇. 6H-SiC纳米磨削机理的分子动力学研究[J]. 材料导报, 2025, 39(10): 24080001-8.
GENG Ruiwen, ZHOU Xingchen, TIAN Zhuxin, XIE Qiming, LI Lijun, WU Haihua, SHUANG Jiajun, YANG Zhijiang. Study on the Nano-grinding Mechanism of 6H-SiC Based on Molecular Dynamics. Materials Reports, 2025, 39(10): 24080001-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080001  或          https://www.mater-rep.com/CN/Y2025/V39/I10/24080001
1 Chen Z B, Huang A Q. Materials Science in Semiconductor Processing, 2024, 172, 108052.
2 Chaudhary O S, Denaï M, Refaat S S, et al. Energies, 2023, 16(18), 6689.
3 Taibi I, Abid H. Materials Science Forum, 2022, 1062, 427.
4 Huang Y G, Tang F, Ma D W, et al. IEEE Photonics Journal, 2019, 11(5), 1.
5 Zhang S, Cheng X, Chen J Y. Applied Surface Science, 2022, 588, 152944.
6 Xiao G B, To S, Zhang G Q. Computational Materials Science, 2015, 98, 178.
7 Yu D L, Zhang H L, Feng X Y, et al. ACS Omega, 2022, 7(21), 18168.
8 Wu Z H, Zhang L C, Yang S Y, et al. Tribology International, 2022, 171, 107563.
9 Yan J W, Asami T, Harada H, et al. Precision Engineering, 2009, 33(4), 378.
10 Li M, Guo X G, Kang R K, et al. Tribology International, 2023, 187, 108720.
11 Liu R H. Research on the surface machining mechanism of hard and brittle materials based on single abrasive grain wear behavior. Master’s Thesis, Chang’an University, China, 2022(in Chinese).
刘瑞虎. 基于单颗磨粒磨削行为的硬脆材料表面加工机理研究. 硕士学位论文, 长安大学, 2022.
12 Plimpton S. Journal of Computational Physics, 1995, 117(1), 1.
13 Tian Z G, Chen X, Xu X P. International Journal of Extreme Manufacturing, 2020, 2(4), 045104.
14 Tersoff J. Physical Review B, 1989, 39(8), 5566.
15 Liu Y, Li B Z, Kong L F. Computational Materials Science, 2018, 148, 76.
16 Chen S K. Study of surface and subsurface damage of single crystal SiC wafer in ultraprecission machining. Master’s Thesis, Guangdong University of Technology, China, 2015(in chinese)
陈森凯. 单晶SiC基片超精密加工表面及亚表面损伤研究. 硕士学位论文, 广东工业大学, 2015.
17 Zhao P Y, Zhao B, Pan J S, et al. Materials Science in Semiconductor Processing, 2022, 143, 106531.
18 Hua D P, Zhou Q, Wang W, et al. Journal of Mechanical Engineering, 2024, 60(5), 231(in Chinese).
华东鹏, 周青, 王婉, 等. 机械工程学报, 2024, 60(5), 231.
19 Zhang S, Dai H F. Materials Science in Semiconductor Processing, 2024, 171, 108034.
20 Bi G Y, Li Y Z, Lai M, et al. Applied Surface Science, 2023, 616, 156549.
21 Song J. Study on grinding characteristics of single crystal gallium nitride and its molecular dynamics simulation. Master’s Thesis, Yancheng Institute of Technology, China, 2023(in chinese)
宋健. 单晶氮化镓的磨削特性研究及其分子动力学仿真. 硕士学位论文, 盐城工学院, 2023.
22 Matteoli E, Mansoori G A. The Journal of Chemical Physics, 1995, 103, 4672.
23 Chen L, Liu Y Q, Tang C, et al. Journal of Mechanical Engineering, 2023, 59(23), 229(in Chinese).
陈磊, 刘阳钦, 唐川, 等. 机械工程学报, 2023, 59(23), 229.
24 Nguyen V T, Fang T H. Scientific Reports, 2021, 11(1), 17795.
25 Geng R W, Shuang J J, Xie Q M, et al. Machine Tool & Hydraulics, 2024, 52(21), 191(in Chinese).
耿瑞文, 双佳俊, 谢启明, 等. 机床与液压, 2024, 52(21), 191.
26 He Y. Study on nanometric cutting mechanism of lutetium oxide single crystal. Master’s Thesis, Tianjin University, China, 2022(in chinese)
何越. 激光晶体氧化镥的纳米切削机理研究. 硕士学位论文, 天津大学, 2022.
27 Goel S, Luo X C, Agrawal A, et al. International Journal of Machine Tools and Manufacture, 2015, 88, 131.
28 Xiao L B. The study of effects of secondary cutting on surface damage of monocrystalline silicon. Master’s Thesis, Yanshan University, China, 2021(in chinese)
肖联榜. 二次切削对单晶硅表面损伤的影响研究. 硕士学位论文, 燕山大学, 2021.
29 Liu Y L, Ji Y Q, Dong L Q, et al. Applied Physics A, 2021, 128(1), 34.
30 Zhao L, Hu W J, Zhang Q, et al. Ceramics International, 2021, 47(17), 23895.
31 Guo X G, Zhai R F, Shi Y T, et al. The International Journal of Advanced Manufacturing Technology, 2020, 106(1), 333.
32 Pan R, Zhong B, Wang Z Z, et al. The International Journal of Advanced Manufacturing Technology, 2018, 94(1), 643.
33 Wang H X, Gao S, Guo X G, et al. Journal of Electronic Materials, 2023, 52(7), 4865.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 王慧明, 金剑锋, 王东新, 许德美, 郭凯琪, 杨培军, 秦高梧. 原子模拟研究铍$〈11\bar{2}0〉$对称倾侧晶界的能量与结构特性[J]. 材料导报, 2025, 39(4): 23110178-7.
[3] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[4] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[5] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[6] 童涛涛, 李宗利, 刘士达, 张晨晨, 金鹏. 从纳米水化硅酸钙到水泥净浆弹性性能多尺度递推模型[J]. 材料导报, 2024, 38(7): 22120188-8.
[7] 杨程程, 柳力, 刘朝晖, 黄优, 刘磊鑫. 基于分子动力学的偶联剂接枝改性玄武岩纤维与沥青粘附特性研究[J]. 材料导报, 2024, 38(6): 22110027-7.
[8] 汤文, 旷强, 张宇翔, 吕悦晶. 植物油微胶囊沥青混合料的微观力学性能及自愈合机制[J]. 材料导报, 2024, 38(4): 22090060-7.
[9] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[10] 崔晔晖, 赵昂, 曾祥国. NiTi合金强冲击荷载下微孔洞演化行为的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040134-11.
[11] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[12] 朱雅婧, 徐光霁, 马涛, 范剑伟, 胡靖. 基于有限元和分子模拟的热再生沥青激活行为研究[J]. 材料导报, 2024, 38(13): 22040306-7.
[13] 李天宇, 柴肇云, 杨泽前, 辛子朋, 孙浩程, 闫珂. 高岭石表面水化机理及电场弱化其吸附性能的分子模拟[J]. 材料导报, 2024, 38(1): 22050283-7.
[14] 李欢, 刘千喜, 曹彪, 张长鑫, 钱利勤, 周亢. 铝/铜超声波焊接与连接的研究进展[J]. 材料导报, 2023, 37(S1): 23040197-11.
[15] 施宏玉, 邢冀琦, 薛培宏, 刘娟. 分子尺度下研究海洋污损生物的吸附机理[J]. 材料导报, 2023, 37(7): 21120126-7.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed