Please wait a minute...
材料导报  2024, Vol. 38 Issue (16): 23040213-10    https://doi.org/10.11896/cldb.23040213
  高分子与聚合物基复合材料 |
甲基取代二芳基氧化膦阻燃改性环氧树脂的研究
吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫*
山东科技大学材料科学与工程学院,山东 青岛 266590
Study on Methyl Substitued Diarylphosphine Oxide Flame Retardant Modified Epoxy Resin
WU Mei, XU Xiaolei, LI Xiao, LIU Jiuhong, YU Guangrui, DUAN Haodong, HAN Yuxi, YU Qing, WANG Zhongwei*
College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
下载:  全 文 ( PDF ) ( 15019KB )     补充信息
输出:  BibTeX | EndNote (RIS)      
摘要 通过苯基二氯化膦(DCPP)分别与甲苯和间二甲苯反应,制备了(4-甲苯基)苯基氧化磷(4-MPO)和(2,4-二甲苯基)苯基氧化磷(2,4-DMPO)两种新化合物。以目标化合物为反应型阻燃剂合成了双酚A型含磷环氧,并进一步制备了4,4′-二氨基二苯砜固化的阻燃环氧树脂。分别测试阻燃环氧树脂的热稳定性、阻燃性、吸水性、介电性能,并研究了阻燃机理。结果表明:两种阻燃剂均能提高环氧树脂的阻燃性,其中2,4-DMPO阻燃EP的效率更高。4-MPO改性环氧树脂的磷含量为0.9%(质量分数,下同)时,其极限氧指数(LOI)达到31.5%并通过UL-94 V-0等级,2,4-DMPO改性环氧树脂的磷含量为0.6%时,其极限氧指数(LOI)达到30.3%并通过UL-94 V-0等级。与未改性环氧树脂相比,4-MPO和2,4-DMPO改性环氧树脂的热稳定性、Tg和吸水性都有所下降,但介电性能明显提高,2,4-DMPO改性环氧树脂表现出更高的阻燃性和更好的介电性能。阻燃机理研究表明,两个阻燃剂均通过气相和固相阻燃机理发挥作用,并以气相机理为主。以上结果表明,两种化合物均可作为环氧树脂的良好阻燃剂。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴妹
徐晓磊
李晓
刘玖红
于光睿
段好东
韩玉玺
于青
王忠卫
关键词:  环氧树脂  阻燃剂  二苯基氧化膦  介电性能  阻燃性能    
Abstract: Two new compounds, (4-methylphenyl) phenylphosphine oxide (4-MPO) and (2, 4-dimethylphenyl) phenylphosphine oxide (2, 4-DMPO) were synthesized by the reaction of phenylphosphorus dichloride (DCPP) with toluene and meta-xylene, respectively. The target compounds were introduced as reactive flame retardants into bisphenol A epoxy resin to prepare phosphorus-containing epoxy and flame retardant epoxy resin cured by 4, 4′-diaminodiphenylsulfone was further prepared. Thermal stability, flame retardancy, water absorptivity and dielectric property of the flame retardant epoxy resin were tested, and the flame retardant mechanism was studied. It was found that the two flame retardants can effectively improve the flame retardancy of epoxy resin, the 2, 4-DMPO exhibits higher flame retardant efficiency. The resulting flame retar-dant EP achieved a LOI of 31.5% and a UL-94 V-0 rating when the 4-MPO modified epoxy resin phosphorus content was 0.9% (mass fraction, the same below), while the flame retardant EP demonstrated a LOI of 30.3% and received a UL-94 V-0 rating when the phosphorus content of the 2, 4-DMPO modified epoxy resin was 0.6%. Compared with unmodified epoxy, the thermal stability, Tg and water absorptivity were slightly decreased, but the dielectric property was significantly improved.2, 4-DMPO modified epoxy resin showed higher flame retardancy and better dielectric property. The two flame retardants both act through gas phase and solid phase flame retardant mechanism, and the gas phase mechanism plays an important role.
Key words:  epoxy resin    flame retardant    diphenylphosphine oxide    dielectric property    flame retardant property
出版日期:  2024-08-25      发布日期:  2024-09-10
ZTFLH:  TQ314.24  
基金资助: 山东省自然科学基金(ZR2020LFG002;ZR2020QB023)
通讯作者:  *王忠卫,山东科技大学材料科学与工程学院教授,2001年7月于山东省青岛科技大学获得硕士学位,2004年8月于北京市北京理工大学获得博士学位。2004年8月至今于山东科技大学材料科学与工程学院任教,主要从事功能高分子材料改性、有机磷阻燃剂、光引发剂研究等开发及应用工作。以第一作者或通信作者发表SCI论文20余篇;以第一发明人授权国家发明专利6件。wangzhongwei@sdust.edu.cn   
作者简介:  吴妹,2021年6月于山东省德州学院获得工学学士学位,2024年6月于山东科技大学材料科学与工程学院获得工程硕士学位。曾在王忠卫教授的指导下进行低卤阻燃液态环氧树脂的合成与应用研究。
引用本文:    
吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
WU Mei, XU Xiaolei, LI Xiao, LIU Jiuhong, YU Guangrui, DUAN Haodong, HAN Yuxi, YU Qing, WANG Zhongwei. Study on Methyl Substitued Diarylphosphine Oxide Flame Retardant Modified Epoxy Resin. Materials Reports, 2024, 38(16): 23040213-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23040213  或          https://www.mater-rep.com/CN/Y2024/V38/I16/23040213
1 Huo S Q, Liu Z T, Wang J. Journal of Thermal Analysis and Calorimetry, 2019, 139(2), 1099.
2 Zhang W W, Wu H J, Meng W H, et al. High Performance Polymers, 2019, 32(4), 359.
3 Wang C H, Zhang Y Q, Yang C X. Journal of Technology, 2022, 22(4), 321 (in Chinese).
王承慧, 张英强, 杨晨熙, 等. 应用技术学报, 2022, 22(4), 321.
4 Liu W, Chen K P, Zhao X L. Journal of Chongqing Technology and Business University (Natural Science Edition), 2022, 39(3), 1 (in Chinese).
刘文, 陈可平, 赵秀丽. 重庆工商大学学报(自然科学版), 2022, 39(3), 1.
5 Liu L C, Zhang W C, Yang R J. Polymers for Advanced Technologies, 2020, 31(9), 2058.
6 Yang D Q, Dong L M, Hou X D, et al. Polymers for Advanced Technologies, 2019, 31(1), 135.
7 Wei Z Q, Gu X T, Wu J, et al. Fire and Materials, 2019, 43(7), 892.
8 Zhao J J, Xu D, Huang S, et al. Polymer Degradation and Stability, 2018, 156, 89.
9 Huang S, Hou X, Li J J, et al. High Performance Polymers, 2017, 30, 1229.
10 Mei F C, Zhao J J, Tian C, et al. Engineering Plastics Application, 2021, 49(12), 123 (in Chinese).
梅凤策, 赵君静, 田冲, 等. 工程塑料应用, 2021, 49(12), 123.
11 Shang W H, Jiang H. High Performance Polymers, 2020, 32, 793.
12 Chen T, Peng C H, Liu C, et al. Macromolecular Materials and Engineering, 2019, 304, 1800498.
13 Na T Y, Jiang H, Liu X, et al. European Polymer Journal. 2018, 100, 96.
14 小椋一郎. DIC Technical Review, 2001, 7, 16.
15 Chang H C, Lin H T, Lin C H, et al. Polymer Degradation and Stability, 2013, 98, 102.
16 Wang P, Xia L, Jian R, et al. Polymer Degradation and Stability, 2018, 149, 69.
17 Hu P, Zheng X, Zhu J, et al, Polymers for Advanced Technologies, 2020, 31(11), 2480.
18 Xu S J, Xu Z Y, Hou Z M, et al. Materials Reports, 2023, 37(20), 259 (in Chinese).
许松江, 许志彦, 侯泽明, 等. 材料导报, 2023, 37(20), 259
19 Wang P, Yang F S, Cai Z S. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1429.
20 Zhu Z M, Lin P L, Wang H, et al. Journal of Materials Science, 2020, 55(27), 12836.
21 Luo H Q, Rao W H, Zhao P, et al. Polymer Degradation and Stability, 2020, 178, 109195.
22 Wang R, Zhuo D X, Weng Z X, et al, Journal of Materials Chemistry A, 2015, 3(18), 9826.
23 Cao J, Duan H, Zou J, et al. Polymer Degradation and Stability, 2021, 187, 109548.
24 Chen Q J, Liu Z, Rong Z, et al. Transactions of China Pulp and Paper, 2022, 37(3), 62 (in Chinese).
陈启杰, 刘茁, 荣智, 等. 中国造纸学报, 2022, 37(3), 62.
25 Xu Y J, Shi X H, Lu J H, et al, Composites Part B: Engineering, 2020, 184, 107673.
26 Ye X, Li J, Zhang W, et al, Composites Part B: Engineering, 2020, 191, 107961
[1] 何德健, 王振华, 刘保英, 房晓敏, 徐元清, 丁涛. 二乙基次磷酸铝和三聚氰胺衍生物协效阻燃PA6/GF复合材料[J]. 材料导报, 2025, 39(6): 24020106-8.
[2] 李迎昕, 陈雅君, 钱立军. 含磷酰胺结构阻燃剂在高分子材料中的应用进展[J]. 材料导报, 2025, 39(5): 23120086-8.
[3] 段忆盟, 杨昊, 王鑫, 黄骏, 赵思瑞, 周福升, 高超. 基于Johnson-Cook模型的盆式绝缘子环氧树脂材料裂纹缺陷扩展行为研究[J]. 材料导报, 2025, 39(12): 24050030-7.
[4] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[7] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[8] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[9] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[10] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[11] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[12] 崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
[13] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[14] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[15] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed