Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23040277-9    https://doi.org/10.11896/cldb.23040277
  无机非金属及其复合材料 |
二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展
崔晓晴1, 王水莲1, 王锐1,2,*, 张洪艳1,2,*
1 北京服装学院材料设计与工程学院,北京 100029
2 北京服装学院服装材料研究开发与评价北京市重点实验室,北京市纺织纳米纤维工程技术研究中心,北京 100029
Research Progress of Two-dimensional Conductive Nanomaterials in Polymer Combustion Early Warning and Flame-retardant Applications
CUI Xiaoqing1, WANG Shuilian1, WANG Rui1,2,*, ZHANG Hongyan1,2,*
1 School of Materials Design & Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
2 Beijing Key Laboratory of Clothing Materials R & D and Assessment, Beijing Engineering Research Center of Textile Nanofiber, Beijing Institute of Fashion Technology, Beijing 100029, China
下载:  全 文 ( PDF ) ( 38176KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石墨烯、MXene等二维导电纳米材料由于具有独特的结构和导电性,在火灾预警和阻燃领域展现出优异的性能和广阔的应用前景。聚合物及其复合材料的广泛应用带来了一定的安全隐患和火灾风险。但传统火灾报警器难以在未见明火的预燃阶段及时发出警报信号,进而导致救援人员错失最佳救援时间,因此火灾的早期预警对保护人身安全和财产具有重要意义。广大科研工作者分别从绿色、环保、舒适、消防安全等角度出发,致力于提高材料的阻燃性、灵敏度以及响应时间。本文综述了近年来预警阻燃涂层的响应机制及研究现状,介绍了以石墨烯、MXene二维导电纳米材料为主的预警阻燃涂层的制备方法、预警阻燃机制及性能改进策略,总结了目前研究工作中仍旧存在的不足以及未来的发展方向,能够为阻燃预警相关工作的开展提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
崔晓晴
王水莲
王锐
张洪艳
关键词:  温度传感器  二维导电材料  涂层  阻燃剂  火灾预警    
Abstract: Two-dimensional conductive nanomaterials such as graphene and MXene show excellent performance and broad application prospects in the field of fire warning and flame retardancy due to their unique structure and conductivity. It is found that with the wide application of polymers and their composite materials, it brings certain safety hazards and fire risks. However, it is difficult for traditional fire alarms to issue alarm signals in time in the preignition stage without open flames, which in turn causes rescuers to miss the best rescue time, so early warning of fire is of great significance to protect personal safety and property. This paper reviews the response mechanism and research status of early warning flame retardant coatings in recent years, introduces the preparation method, early warning flame retardant mechanism and performance improvement strategy of early warning flame retardant coating based on graphene and MXene two-dimensional conductive nanomaterials, and summarizes the shortcomings and future development directions of the current research work, which can provide reference for the development of flame retardant early warning related work.
Key words:  temperature sensor    two-dimensional conductive materials    coating    flame retardant    fire warning
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TQ129  
  TS95  
通讯作者:  *王锐,北京服装学院材料设计与工程学院教授、硕士研究生导师。1986年华南理工大学化学纤维专业本科毕业,1992年北京服装学院化学纤维专业硕士毕业,2003年四川大学材料学博士毕业。自1986年本科毕业后到北京服装学院工作至今,现任北京服装学院服装材料研究开发与评价中心(北京市重点实验室)主任。目前主要从事功能纤维材料、阻燃纤维和超细纤维等方面的研究工作。共发表论文343篇,其中SCI论文91篇,EI论文89篇,获授权国家发明专利52项,合著5部。clywangrui@bift.edu.cn;
张洪艳,北京服装学院材料设计与工程学院教授、硕士研究生导师。1999年东北师范大学物理系本科毕业,2002年东北师范大学物理系硕士毕业,2005年中国科学院长春光学精密机械与物理研究所博士毕业。2007年于中国科学院物理研究所博士毕业后到中国科学院理化技术研究所工作,2018年到北京服装学院工作至今。目前主要从事智能可穿戴设备的研究工作。发表论文100余篇,包括Biosensors & Bioelectronics、Analytical Chemistry、Sensors and Actuators B:Chemical等。zhyzzh@126.com   
作者简介:  崔晓晴,2020年6月于河北科技大学获得工学学士学位。现为北京服装学院材料设计与工程学院硕士研究生,在王锐教授和张洪艳教授的指导下进行研究。目前主要研究领域为智能可穿戴传感器。
引用本文:    
崔晓晴, 王水莲, 王锐, 张洪艳. 二维导电纳米材料在聚合物燃烧预警及阻燃应用中的研究进展[J]. 材料导报, 2024, 38(17): 23040277-9.
CUI Xiaoqing, WANG Shuilian, WANG Rui, ZHANG Hongyan. Research Progress of Two-dimensional Conductive Nanomaterials in Polymer Combustion Early Warning and Flame-retardant Applications. Materials Reports, 2024, 38(17): 23040277-9.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040277  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23040277
1 Bakhtiyari S, Taghi-Akbari L, Ashtiani M J. Fire and Materials, 2015, 39(1), 1.
2 Laoutid F, Bonnaud L, Alexandre M, et al. Materials Science and Engineering R:Reports, 2009, 63(3), 100.
3 Bar M, Alagirusamy R, Das A. Fibers and Polymers, 2015, 16(4), 705.
4 Yuan B H, Cao C R. Journal of Safety and Environment, 2021, 21(4), 1490 (in Chinese).
袁必和, 曹承然. 安全与环境学报, 2021, 21(4), 1490.
5 Chu Y Y, Zhang H, Shen S F, et al. Science China Technological Sciences, 2010, 53(10), 2739.
6 James R, Qualey III. Fire Technology, 2000, 36, 89.
7 Zhang S, Zhang Y, Pan M Z. Acta Materiae Compositae Sinica, 2021, 38(1), 55 (in Chinese).
张帅, 张隐, 潘明珠. 复合材料学报, 2021, 38(1), 55.
8 Chen J Y, Xie H L, Lai X J, et al. Chemical Engineering Journal, 2020, 399, 125729.
9 Novoselov K S, Geim A K, Morozov S V, et al. Science, 2004, 306(5696), 666.
10 Zhang J N, Liang T, Lei C, et al. Electronic Measurement Technology, 2021, 44(23), 68 (in Chinese).
张君娜, 梁庭, 雷程, 等. 电子测量技术, 2021, 44(23), 68.
11 Lee C G, Wei X D, Kysar J W, et al. Science, 2008, 321, 385.
12 Pop E, Varshney V, Roy A K. MRS Bulletin, 2012, 37(12), 1273.
13 Sehrawat P, Abid N, Islam S S, et al. Sensors and Actuators B:Chemical, 2018, 258, 424.
14 Kuzubasoglu B A, Bahadir S K. Sensors and Actuators A:Physical, 2020, 315, 112282.
15 Sadasivuni K K, Kafy A, Kim H C, et al. Synthetic Metals, 2015, 206, 154.
16 Wang S C, Pan S Y, Sun J L, et al. Materials Reports, 2023, 37(24), 68(in Chinese).
王姗迟, 潘嵩玥, 孙俊玲, 等. 材料导报, 2023, 37(24), 68.
17 Xie H L, Lai X J, Li H Q, et al. Chemical Engineering Journal, 2020, 382, 122929.
18 Xu H, Li Y, Huang N J, et al. Journal of Hazardous Materials, 2019, 363, 286.
19 Wu Q, Gong L X, Li Y, et al. ACS Nano, 2018, 12(1), 416.
20 Chen Z, Chen W H, Liu P J, et al. Composites Part A:Applied Science and Manufacturing, 2021, 150, 106598.
21 Xia L, Lv Y, Miao Z X, et al. Chemical Engineering Journal, 2022, 433, 133501.
22 Zhang M J, Wang M L, Zhang M X, et al. ACS Applied Materials & Interfaces, 2019, 11(50), 47456.
23 Huang H Y, Jiang R M, Feng Y L, et al. Nanoscale, 2020, 12(3), 1325.
24 Naguib M, Kurtoglu M, Presser V, et al. Advanced Materials, 2011, 23(37), 4248.
25 Wei Y, Zhang P, Soomro R A, et al. Advanced Materials, 2021, 33(39), 2103148.
26 Li N, Peng J H, Ong W J, et al. Matter, 2021, 4(2), 377.
27 Jin C, Bai Z Q. ACS Sensors, 2022, 7(4), 929.
28 Xu B, Gogotsi Y. Chinese Chemical Letters, 2020, 31(4), 919.
29 Deysher G, Shuck C E, Hantanasirisakul K, et al. ACS Nano, 2020, 14(1), 204.
30 Liu L X, Chen W, Zhang H B, et al. Advanced Functional Materials, 2019, 29(44), 1905197.
31 Naguib M, Mochalin V N, Barsoum M W, et al. Advanced Materials, 2014, 26(7), 992.
32 Kim H, Anasori B, Gogotsi Y, et al. Chemistry of Materials, 2017, 29(15), 6472.
33 Jiang X T, Liu S X, Liang W Y, et al. Laser & Photonics Reviews, 2018, 12(2), 1700229.
34 Yang C, Luo Y, Lin H, et al. ACS Nano, 2021, 15(1), 1086.
35 Cao W T, Wang Z, Liu X H, et al. Nano-Micro Letters, 2022, 14(1), 119.
36 Cheng Y F, Ma Y N, Li L Y, et al. ACS Nano, 2020, 14(2), 2145.
37 Hai Y, Jiang S H, Zhou C L, et al. Dalton Transactions, 2020, 49(18), 5803.
38 Xue Y J, Feng J B, Huo S Q, et al. Chemical Engineering Journal, 2020, 397, 125336.
39 Huang Y B, Jiang S H, Liang R C, et al. Chemical Engineering Journal, 2020, 391, 123621.
40 Yu B, Tawiah B, Wang L Q, et al. Journal of Hazardous Materials, 2019, 374, 110.
41 Chen C, Boota M, Urbankowski P, et al. Journal of Materials Chemistry A, 2018, 6(11), 4617.
42 He X, Feng Y T, Xu F L, et al. Chemical Engineering Journal, 2022, 450, 137927.
43 Xie H L, Lai X J, Li H Q, et al. Chemical Engineering Journal, 2019, 369, 8.
44 Guo K Y, Wu Q, Mao M, et al. Composites Part B:Engineering, 2020, 193, 108017.
45 Huang N J, Cao C F, Li Y, et al. Composites Part B:Engineering, 2019, 168, 413.
46 Dong L Y, Hu C G, Song L, et al. Advanced Functional Materials, 2016, 26(9), 1470.
47 Zhang Z H, Zhang J W, Cao C F, et al. Chemical Engineering Journal, 2020, 386, 123894.
48 Khan F, Wang S C, Ma Z W, et al. Small Methods, 2021, 5(4), 2001040.
49 Cao C F, Liu W J, Xu H, et al. Journal of Materials Science & Technology, 2021, 85, 194.
50 Hu C G, Xue J L, Dong L Y, et al. ACS Nano, 2016, 10(1), 1325.
51 Chen B, Xue J L, Gao Z S, et al. Journal of Polymer Research, 2022, 30, 1.
52 Cao C F, Yu B, Guo B F, et al. Chemical Engineering Journal, 2022, 439, 134516.
53 Wu Q, Liu C, Tang L C, et al. Soft Matter, 2021, 17(1), 68.
54 Wei W Y, Yi Y P Q, Song J, et al. ACS Applied Materials & Interfaces, 2022, 14(11), 13790.
55 Chen F F, Zhu Y J, Chen F, et al. ACS Nano, 2018, 12(4), 3159.
56 Huang S, Wang L, Li Y C, et al. Journal of Applied Polymer Science, 2021, 138(27), 50649.
57 Zeng Q T, Zhao Y N, Lai X J, et al. Chemical Engineering Journal, 2022, 446(1), 136899.
58 Zhang Y, Huang Y P, Li M C, et al. Chemical Engineering Journal, 2023, 452(4), 139360.
59 Mao M, Yu K X, Cao C F, et al. Chemical Engineering Journal, 2022, 427, 131615.
60 Wang B L, Lai X J, Li H Q, et al. ACS Applied Materials & Interfaces, 2021, 13(19), 23020.
61 Jiang C C, Chen J Y, Lai X J, et al. Chemical Engineering Journal, 2022, 434, 134630.
62 Zhang L, Huang Y B, Dong H R, et al. Composites Part B:Engineering, 2021, 223, 109149.
63 Li X L, Saez J S D R, Ao X, et al. Chemical Engineering Journal, 2022, 431(2), 134108.
64 Lan C T, Jia H, Qiu M H, et al. ACS Applied Materials & Interfaces, 2021, 13(32), 38761.
[1] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[2] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[3] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[4] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[5] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[6] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[7] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[8] 胡家宇, 徐菲, 钱文勋, 肖怀前, 葛津宇, 李嘉明. 涂覆时间对聚合物水泥基钢筋涂层粘接性能的影响机理[J]. 材料导报, 2024, 38(17): 22060053-4.
[9] 刘春泉, 熊芬, 彭龙生, 黄伟, 林英华. 超高速激光熔覆技术的最新研究进展:关键技术特点及优势,设备研发及其技术参数[J]. 材料导报, 2024, 38(17): 23020075-19.
[10] 任东亭, 王文权, 张新戈, 杜文博, 朱胜. 镁合金基体超音速等离子喷涂Al-Al2O3复合涂层组织与耐腐蚀性能研究[J]. 材料导报, 2024, 38(16): 22120140-7.
[11] 王婷, 胡斌, 王文琴, 王非凡. 微弧火花沉积Zr基非晶涂层的组织及性能[J]. 材料导报, 2024, 38(16): 22090308-6.
[12] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[13] 王慧鹏, 李鹏, 王喜茂, 郭伟玲, 马国政, 王海斗. 冷喷涂温度对Cu-Ti3AlC2复合涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2024, 38(15): 23030288-9.
[14] 武宏, 邵明增, 杨洪波. 涂镀铝+微弧氧化工艺制备复合涂层研究进展[J]. 材料导报, 2024, 38(14): 23120007-9.
[15] 肖华强, 尹星贵, 冯进宇, 肖易, 龚玉婷. TC4钛合金表面激光熔覆Ti-Mo-Al-B复合涂层的组织及摩擦磨损性能[J]. 材料导报, 2024, 38(12): 22080075-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed