Please wait a minute...
材料导报  2024, Vol. 38 Issue (17): 23040078-7    https://doi.org/10.11896/cldb.23040078
  金属与金属基复合材料 |
蓝光激光熔覆纯铜覆层的组织及性能
宁晨红1,2, 高硕洪2, 郑江鹏3, 王枭3, 杨军红3, 苏允海1, 刘敏2, 闫星辰2,*
1 沈阳工业大学材料科学与工程学院,沈阳 110870
2 广东省科学院新材料研究所,现代材料表面工程技术国家工程实验室,广东省现代表面工程技术重点实验室,广州 510650
3 广东粤港澳大湾区硬科技创新研究院,广州 510700
Microstructure and Properties of the Pure Copper Coating Prepared by Blue Laser Cladding
NING Chenhong1,2, GAO Shuohong2, ZHENG Jiangpeng3, WANG Xiao3, YANG Junhong3, SU Yunhai1, LIU Min2, YAN Xingchen2,*
1 School of Material Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
2 Institute of New Materials, Guangdong Academy of Sciences, National Engineering Laboratory of Modern Materials Surface Engineering Technology, Guangdong Provincial Key Laboratory of Modern Surface Engineering Technology, Guangzhou 510650, China
3 Guangdong Key and Core Technology Institute, Guangzhou 510700, China
下载:  全 文 ( PDF ) ( 30725KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纯铜材料对红外波段的激光吸收率较低,难以进行传统红外激光熔覆,因此限制了纯铜材料在表面防护领域的应用。本研究采用蓝光激光熔覆技术制备纯铜涂层,通过理论计算结合实验验证获得了其制备工艺参数。随后对纯铜熔覆层的微观组织、显微硬度和摩擦磨损行为进行分析,并结合XRD和EDS研究了蓝光激光熔覆制备的纯铜涂层的元素分布和物相组成。结果表明:采用蓝光激光熔覆技术制备的纯铜材料具有较大的工艺窗口,可获得成形良好的熔覆层。蓝光激光熔覆后,熔覆界面处出现了明显的金属间化合物相NiCu4以及FeCu4。纯铜熔覆层的显微硬度小于基体材料,并且在结合界面存在明显的硬度变化过渡区域,因此涂层和基体之间的稀释区较大。在室温干摩擦磨损条件下,熔覆层的磨损行为以粘着磨损为主,磨粒磨损为辅,并且存在明显的氧化磨损。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁晨红
高硕洪
郑江鹏
王枭
杨军红
苏允海
刘敏
闫星辰
关键词:  激光熔覆  蓝光激光  纯铜  微观组织  力学性能    
Abstract: The low infrared laser absorption of pure copper material limits its traditional application in surface protection through laser cladding. In this study, blue laser cladding technology was employed to prepare pure copper coatings, and process parameters were obtained through theoretical calculations and experimental verification. Subsequently, the microstructure, microhardness, and friction and wear behavior of the pure copper cladding layer were analyzed. In conjunction with XRD and EDS results, the elemental distribution and phase compositions of the cladding layer during blue laser cladding were also studied. Results indicated that the blue laser cladding technology provides a large process window for producing well-formed cladding layers of pure copper. The cladding interface showed a clear presence of intermetallic compounds NiCu4 and FeCu4. The microhardness of the pure copper cladding layer was found to be lower than that of the substrate material, with a significant hardness transition zone at the bonding interface, indicating a large dilution zone between the coating and substrate. Under dry friction and wear test at room temperature, the cladding layer exhibited good wear resistance, with a mixed mechanism of adhesive and abrasive wear and significant oxidation wear.
Key words:  laser cladding    blue laser    pure copper    microstructure    mechanical property
出版日期:  2024-09-10      发布日期:  2024-09-30
ZTFLH:  TG178  
  TG174.4  
基金资助: 广东省科学院建设国内一流研究机构行动专项资金项目(2021GDASYL-20210102005;2022GDASZH-2022010107;2022GDASZH-2022010203-003);广东省特支计划项目(2019BT02C629);广东省基础与应用基础研究基金项目(2020A1515111031;2021A1515010939);中国科协“青年人才托举工程”(YESS20210269);广州市科技计划项目(202007020008;202102020327)
通讯作者:  *闫星辰,博士研究生导师。主持国家重点研发计划课题、中国科协青年人才托举工程项目、国家自然科学基金青年基金等国家及省级项目7项。发表SCI论文80余篇,总引3 000余次(谷歌学术统计),授权以第一发明人申请发明专利19项,授权发明专利10项,授权美国发明专利2项;入选美国斯坦福大学2023年全球前2%顶尖科学家。yanxingchen@gdinm.com   
作者简介:  宁晨红,2021年6月于长沙学院获得工学学士学位,现为沈阳工业大学材料科学与工程学院与广东省科学院新材料研究所联合培养的硕士研究生,在闫星辰副研究员和苏允海教授的共同指导下进行研究,目前主要从事蓝光激光熔覆高反射率金属材料的研究与制备。
引用本文:    
宁晨红, 高硕洪, 郑江鹏, 王枭, 杨军红, 苏允海, 刘敏, 闫星辰. 蓝光激光熔覆纯铜覆层的组织及性能[J]. 材料导报, 2024, 38(17): 23040078-7.
NING Chenhong, GAO Shuohong, ZHENG Jiangpeng, WANG Xiao, YANG Junhong, SU Yunhai, LIU Min, YAN Xingchen. Microstructure and Properties of the Pure Copper Coating Prepared by Blue Laser Cladding. Materials Reports, 2024, 38(17): 23040078-7.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23040078  或          http://www.mater-rep.com/CN/Y2024/V38/I17/23040078
1 Abdulrahman K O, Akinlabi E T, Mahamood R M. Procedia Manufacturing, 2018, 21, 109.
2 Ma Q, Zhang Y M, Lu B W, et al. Materials Research and Application, 2021, 15(5), 583 (in Chinese).
马清, 张艳梅, 卢冰文, 等. 材料研究与应用, 2021, 15(5), 583.
3 Chu Q K, Yan X C, Yue S J, et al. Materials Research and Application, 2021, 15(4), 350 (in Chinese).
褚清坤, 闫星辰, 岳术俊, 等. 材料研究与应用, 2021, 15(4), 350.
4 Molleda F, Mora J, Molleda J R, et al. Materials Characterization, 2007, 58(5), 613.
5 Sova A, Klinkov S, Kosarev V, et al. Surface & Coatings Technology, 2013, 220(15), 98.
6 Zhao C Y, Zhang L H, Shi Z Q, et al. Materials Reports, 2023(19), 22050201 (in Chinese).
赵燕春, 张林浩, 师自强, 等. 材料导报, 2023(19), 22050201.
7 Yan S P, Zhang A F, Liang S D, et al. Aeronautical Manufacturing Technology, 2017(17), 97 (in Chinese).
严深平, 张安峰, 梁少端, 等. 航空制造技术, 2017(17), 97.
8 Könning T, Drovs S, Stoiber M, et al. Laser, 2019, 47, 204.
9 Prasad H S, Brueckner F, Volpp J, et al. The International Journal of Advanced Manufacturing Technology, 2020, 107(3-4), 1559.
10 Gu B. MW Metal Forming, 2021(3), 1 (in Chinese).
顾波. 金属加工(热加工), 2021(3), 1.
11 Higashino R, Tsukamoto M, Sato Y, et al. In:SPIE Photonics West 2017. San Francisco, 2017, pp.10095.
12 Asano K, Tsukamoto M, Sechi Y, et al. Optics and Laser Technology, 2018, 107, 291.
13 Shibata T, Tsukamoto M, Sato Y, et al. In:Proceedings of the Laser 3D Manufacturing VI. San Francisco, 2019, pp.10909.
14 Yan X C, Chang C, Deng Z Y, et al. Tribology International, 2021, 157, 106873.
15 Ghazi M. Journal of Astrobiology & Outreach, 2020, 8(4), 1000215.
16 Chen C Y, Gu D D, Dai D H, et al. Optics and Laser Technology, 2019, 119, 105666.
17 Wang L, Felicelli S. Materials Science & Engineering A, 2006, 435, 625.
18 Gao S H, Cao J J, Qiu Z G, et al. Materials Letters, 2022, 321, 132393.
19 Wen S Z, Huang P. Principles of tribology, Tsinghua University Press, China, 2010, pp.348(in Chinese).
温诗铸, 黄平. 摩擦学原理, 清华大学出版社, 2018, pp.348.
[1] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[2] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[5] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[6] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[7] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[8] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[9] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[12] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[13] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[14] 杨佳琛, 江海涛, 田世伟, 陈飞达. 基于电子结构理论的微合金Q355B热轧钢力学性能预测[J]. 材料导报, 2024, 38(7): 22090319-5.
[15] 田浩正, 乔宏霞, 冯琼, 韩文文. 石粉替代率对聚合物机制砂粘结砂浆性能及微细观结构的影响[J]. 材料导报, 2024, 38(6): 22050194-7.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed