Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (4): 646-649    https://doi.org/10.11896/j.issn.1005-023X.2018.04.028
  材料研究 |
掺加改性淀粉制备聚羧酸减水剂及其应用
何廷树1, 杨仁和1, 徐一伦2, 李同新2, 房佳斌1
1 西安建筑科技大学材料与矿资学院,西安 710055;
2 陕西友邦新材料科技有限公司,西安 712046
Synthesis and Application of Polycarboxylate Superplasticizer with Modified Starch
HE Tingshu1, YANG Renhe1, XU Yilun2, LI Tongxin2, FANG Jiabin1
1 College of Materials and Mineral Resources, Xi'an University of Architecture and Technology, Xi'an 710055;
2 Shaanxi Youbang New Material Technology Co. Ltd., Xi'an 712046;
下载:  全 文 ( PDF ) ( 1201KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 选取经过降解处理的羧甲基淀粉醚(CMS-Na)代替部分异戊烯基聚氧乙烯醚(TPEG)制备一种新型聚羧酸系减水剂(PC2),利用水泥净浆单组分试验得出CMS-Na对TPEG的最佳替代量为15%。另外,用红外光谱(FTIR)对CMS-Na及聚羧酸减水剂的分子结构进行了表征。结果表明,掺加CMS-Na合成的PC2不仅降低了原材料的成本,而且具有良好的分散性和保塑性,同时不影响混凝土强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何廷树
杨仁和
徐一伦
李同新
房佳斌
关键词:  聚羧酸减水剂  羧甲基淀粉醚  异戊烯基聚氧乙烯醚  替代量  混凝土    
Abstract: A new type of polycarboxylate superplasticizer (PC2) was synthesized by using the carboxymethyl starch ether (CMS-Na) to replace part of isopentenyl polyoxyethylene ether (TPEG). The best substitute of CMS-Na for TPEG was obtained by single component test of cement paste, which was 15%. In addition, the molecular structure of CMS-Na and polycarboxylate superplasticizer was characterized by infrared spectroscopy (FTIR).The results showed that PC2 not only reduced the cost of raw mate-rials, but also had excellent dispersion and plastic preservation abilities, while do no harm to the compressive strength of concrete.
Key words:  polycarboxylate superplasticizer    carboxymethyl starch ether    isopentenyl polyoxyethylene ether    substitution amount    concrete
               出版日期:  2018-02-25      发布日期:  2018-02-25
ZTFLH:  TU528.042.2  
基金资助: 陕西省工业攻关项目(2016GY-205)
作者简介:  何廷树:男,1965年生,教授,博士研究生导师,主要从事混凝土外加剂的开发与应用研究 E-mail:hetingshu@xauat.edu.cn
引用本文:    
何廷树, 杨仁和, 徐一伦, 李同新, 房佳斌. 掺加改性淀粉制备聚羧酸减水剂及其应用[J]. 《材料导报》期刊社, 2018, 32(4): 646-649.
HE Tingshu, YANG Renhe, XU Yilun, LI Tongxin, FANG Jiabin. Synthesis and Application of Polycarboxylate Superplasticizer with Modified Starch. Materials Reports, 2018, 32(4): 646-649.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.04.028  或          http://www.mater-rep.com/CN/Y2018/V32/I4/646
1 黄靖,郭京育,等.聚羧酸系高性能减水剂及其应用技术新进展[M].北京:北京理工大学出版社,2015.
2 张燕萍.变性淀粉的制造与应用[M].北京:化学工业出版社,2007:73.
3 Zhang Xiaodong, Liu Xin, Li Wenying. Synthesis and applied pro-perties of carboxymethyl corenstarch[J].Journal of Applied Polymer Science,2003,89:3016.
4 Kittipongpatana O S, Sirithunyalug J, Laenger R. Preparation and physicochemical properties of sodium carboxymethyl mungbean starches[J].Carbohydrate Polymers,2006,63(1):105.
5 Zhao Meigui. Study on polyether type and modified starch composite superplasticizer[D].Wuhan:Hubei University,2014(in Chinese).
赵梅桂.聚醚型及其与改性淀粉复合型高性能减水剂的研究[D].武汉:湖北大学,2014.
6 Zhang Jingwu, Wu Dahua. The mechanism of resistance to enzymic degradation df carboxymetmyl starch and its distribution of substi-tuent groups along the chain[J].Journal of Tianjin University,1991(4):83(in Chinese).
张镜吾,吴达华.羧甲基淀粉醚的抗酶降解机理和取代基在分子链上的分布[J].天津大学学报,1991(4):83.
7 Andersen P J, Roy D M, Gaidis J M. The effect of superplasticizer molecular weight on its adsorption on and dispersion of cement[J].Cement and Concrete Research,1988,18(6):980.
8 Sun Zhenping,Wang Ling. How to safely and efficiently apply polycarboxylate based superplasticizer[J].Concrete, 2007(6):35(in Chinese).
孙振平,王玲.如何安全高效地应用聚羧酸系减水剂[J].混凝土,2007(6):35.
9 Li Ping. Polycarboxylate superplasticizers and their mechanism[D].Tianjin:Hebei University of Technology,2010(in Chinese).
李平.聚羧酸系高效减水剂及其机理研究[D].天津:河北工业大学,2010.
10 何廷树.混凝土外加剂[M].西安:陕西科学技术出版社,2003:93.
[1] 李地红, 夏娴, 王艳君, 张景卫, 许国栋. 镶嵌式混凝土构件加固、补强、修复技术研究[J]. 材料导报, 2019, 33(z1): 225-228.
[2] 胡建伟, 谢永江, 刘子科, 翁智财, 王月华, 何龙. 两阶段变速搅拌对高强混凝土稳定性的影响[J]. 材料导报, 2019, 33(z1): 229-233.
[3] 候昱灼, 廖洪强, 高宏宇, 程芳琴. 不同条件下聚苯颗粒泡沫混凝土的发泡过程及发泡体性能研究[J]. 材料导报, 2019, 33(z1): 234-238.
[4] 韩方玉, 刘建忠, 刘加平, 马骉, 沙建芳, 王兴龙. 基于超高性能混凝土的钢筋锚固性能研究[J]. 材料导报, 2019, 33(z1): 244-248.
[5] 李地红, 夏娴, 高群, 代函函, 于海洋. 镶嵌式加固混凝土构件加固区域力学行为的有限元分析[J]. 材料导报, 2019, 33(z1): 249-253.
[6] 黄艳玲, 元强, 刘耀强, 赵虎, 王跃跃, 左胜浩, 周大军, 孙泽川. 外加剂对半流动性自密实混凝土滑模施工性能的影响[J]. 材料导报, 2019, 33(z1): 254-260.
[7] 夏娴, 李地红, 高群, 代函函, 于海洋. 基于ABAQUS的镶嵌式混凝土加固、修复技术研究[J]. 材料导报, 2019, 33(z1): 269-273.
[8] 王家滨, 牛荻涛. 硝酸侵蚀/冻融循环共同作用喷射混凝土耐久性能(I):物理力学性能及孔结构变化[J]. 材料导报, 2019, 33(8): 1340-1347.
[9] 李霖皓, 龙广成, 刘芳萍, 石晔, 马聪, 谢友均. 混凝土在蒸养过程中的变形性能[J]. 材料导报, 2019, 33(8): 1322-1327.
[10] 王家滨, 牛荻涛. 喷射混凝土的硝酸侵蚀:孔溶液H+与NO3-的扩散规律及侵蚀机理[J]. 材料导报, 2019, 33(6): 991-999.
[11] 刘从振, 范英儒, 王磊, 黄永波, 钱觉时. 聚羧酸减水剂对硫铝酸盐水泥水化及硬化的影响[J]. 材料导报, 2019, 33(4): 625-629.
[12] 万镇昂, 马昆林, 龙广成, 谢友均. 基于Weibull分布和残余应变的SCC疲劳损伤本构模型[J]. 材料导报, 2019, 33(4): 634-638.
[13] 乔宏霞, 郭向柯, 朱彬荣. 三参数Weibull分布的多因素作用下混凝土加速寿命试验[J]. 材料导报, 2019, 33(4): 639-643.
[14] 吴彰钰, 余红发, 麻海燕, 冯滔滔, 达波. 基于可靠度的海洋浪溅区大掺量矿渣混凝土结构服役寿命预测[J]. 材料导报, 2019, 33(2): 264-270.
[15] 高小建, 李双欣. 微波养护对掺矿渣超高性能混凝土力学性能的影响及机理[J]. 材料导报, 2019, 33(2): 271-276.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed