Please wait a minute...
材料导报  2024, Vol. 38 Issue (13): 23020027-6    https://doi.org/10.11896/cldb.23020027
  无机非金属及其复合材料 |
NaAlO2激发石灰石粉的净浆中胶凝物相表征
刘源涛, 董必钦, 洪舒贤, 王琰帅*, 房国豪
深圳大学土木与交通工程学院,广东省滨海土木工程耐久性重点实验室,深圳市低碳建筑材料与技术重点实验室,广东 深圳 518060
Characterization of Cementitious Phase in NaAlO2-Activated Limestone-based Paste
LIU Yuantao, DONG Biqin, HONG Shuxian, WANG Yanshuai*, FANG Guohao
Shenzhen Key Laboratory for Lowcarbon Construction Material and Technology, Guangdong Province Key Laboratory of Durability for Marine Civil Engineering,College of Civil and Transportation Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
下载:  全 文 ( PDF ) ( 13717KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 石灰石粉在水泥基材料中活性较低。然而,采用NaAlO2作为激发剂,可以制备性能较好的石灰石粉基胶凝材料。为深入研究NaAlO2激发石灰石粉的净浆中的胶凝物相,明晰其性能形成机理,本工作对比分析了NaAlO2激发(D1)与NaOH、Al(OH)3按1∶ 1的物质的量比复配激发(D2)的反应进程、产物占比、力学性能、微观结构特征。试验结果表明,D1与D2均出现了两个放热峰。第一个峰对应着激发剂溶解,第二个峰与单碳型碳铝酸钙(Mc)生成有关。D1中Mc的结晶进程快于D2中的,其第二个放热峰出现时间比D2早。D1中,部分NaAlO2生成了Mc,其他被消耗部分没有形成晶体产物,而是形成介于晶体与无定形状态之间的微晶AH3相。透射电镜(TEM)结果表明,微晶AH3相呈现出衍射斑点零星分布于同心圆环上的衍射特征,其颗粒尺寸比三水铝石(Gibbsite)小,具有更好的胶凝特性。养护28 d后,D1(22.80 MPa)的抗压强度显著高于D2(0.95 MPa),表明AH3相是NaAlO2激发石灰石粉的净浆中的重要胶凝物相。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘源涛
董必钦
洪舒贤
王琰帅
房国豪
关键词:  石灰石粉  NaAlO2  反应进程  胶凝性能  AH3    
Abstract: Limestone has a low reactivity in cement-based material. However, when NaAlO2 is used as the activator, the limestone-based cementitious material with good property can be fabricated. Aiming to further analyze the cementitious phase in the NaAlO2-activated limestone paste and clarify the formation mechanism of its property, the reaction process, product proportion, mechanical property and microstructure characteristic of D1 (activated by NaAlO2) and D2 (activated by the mixture of NaOH and Al(OH)3 at a 1∶1 molar ratio) were compared and analyzed in this work. The experimental results showed that both D1 and D2 contained two exothermic peaks. The first peak corresponded to the dissolution of the activator, and the second peak was related to the formation of monocarboaluminate (Mc). The crystallization process of Mc in D1 was faster than that in D2, and the second exothermic peak appeared earlier in D1 than that in D2. In D1, partial NaAlO2 formed Mc. The other consumed part did not form crystal products. They formed the microcrystalline AH3 phase which was between crystal and amorphous state. Transmission electron microscopy (TEM) results indicated that the microcrystalline AH3 phase exhibited the diffraction characteristics of scattered diffraction spots on concentric rings. It had a smaller particle size than gibbsite and yielded a better cementitious characteristic. After curing 28 d, the compressive strength of D1 (22.80 MPa) was significantly higher than that of D2 (0.95 MPa), indicating that AH3 phase was an important cementitious phase in the NaAlO2-activated limestone paste.
Key words:  limestone powder    NaAlO2    reaction process    cementitious property    AH3 phase
出版日期:  2024-07-10      发布日期:  2024-08-01
ZTFLH:  TU526  
基金资助: 国家自然科学基金(52108228;51925805)
通讯作者:  *王琰帅,博士,深圳大学土木与交通工程学院助理教授、特聘副研究员、硕士研究生导师,2018年博士毕业于中国香港理工大学土木及环境工程学系。主要从事可持续生态建筑材料研究,包括绿色建材设计、建筑材料耐久性及性能评估、灰渣废弃物资源化及再生应用等。已发表SCI论文40余篇,包括Cement and Concrete Research,Cement Concrete & Composites、NDT & E International、Journal of Cleaner Production、Chemosphere等,申请国内外专利16项,目前已获得国内授权专利6项。yswang@szu.edu.cn   
作者简介:  刘源涛,深圳大学土木与交通工程学院土木工程专业博士研究生,在董必钦教授、王琰帅助理教授的指导下进行研究。主要研究方向有固体废弃物资源化再利用、新型胶凝材料、自修复混凝土等。
引用本文:    
刘源涛, 董必钦, 洪舒贤, 王琰帅, 房国豪. NaAlO2激发石灰石粉的净浆中胶凝物相表征[J]. 材料导报, 2024, 38(13): 23020027-6.
LIU Yuantao, DONG Biqin, HONG Shuxian, WANG Yanshuai, FANG Guohao. Characterization of Cementitious Phase in NaAlO2-Activated Limestone-based Paste. Materials Reports, 2024, 38(13): 23020027-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23020027  或          http://www.mater-rep.com/CN/Y2024/V38/I13/23020027
1 Goldscheider N, Chen Z, Auler A S, et al. Hydrogeology Journal, 2020, 28(5), 1661.
2 Xu D L, Cui Y S, Li H, et al. Cement and Concrete Research, 2015, 78, 2.
3 Shen W, Liu Y, Yan B, et al. Renewable and Sustainable Energy Reviews, 2017, 75, 618.
4 Lothenbach B, Scrivener K, Hooton R D. Cement and Concrete Research, 2011, 41(12), 1244.
5 De Weerdt K, Haha M B, Le Saout G, et al. Cement and Concrete Research, 2011, 41(3), 279.
6 Zhuang W, Li S, Wang Z, et al. Composites Part B:Engineering, 2022, 243, 110160.
7 Snellings R, Machner A, Bolte G, et al. Cement and Concrete Research, 2022, 151, 106647.
8 Maier M, Sposito R, Beuntner N, et al. Cement and Concrete Research, 2022, 154, 106736.
9 Gupta S, Mohapatra B N, Bansal M. Current Research in Green and Sustainable Chemistry, 2020, 3, 100019.
10 Katayama T. Cement and Concrete Research, 2010, 40(4), 643.
11 Ortega-Zavala D E, Santana-Carrillo J L, Burciaga-Díaz O, et al. Cement and Concrete Research, 2019, 120, 267.
12 Wang D H, Shi C J, Farzadnia N, et al. Construction and Building Materials, 2018, 192, 153.
13 Liu Y T, Wang Y S, Dong B Q. Materials Reports, 2023, 37(1), 91 (in Chinese).
刘源涛, 王琰帅, 董必钦. 材料导报, 2023, 37(1), 91.
14 Wang F, Long G C, He J H, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(20), 6559.
15 Liu Y T, Zhang Y Y, Dong B Q, et al. Construction and Building Materials, 2023, 368, 130446.
16 Zhang Y Y, Chang J, Zhao J Y, et al. Journal of the American Ceramic Society, 2018, 101(9), 4262.
17 Li L, Yang J, Shen X. Measurement, 2022, 199, 111290.
18 Ke X Y, Bernal S A, Provis J L. Cement and Concrete Research, 2016, 81, 24.
19 Bernal S A, San Nicolas R, Myers R J, et al. Cement and Concrete Research, 2014, 57, 33.
20 Puerta-Falla G, Balonis M, Le Saout G, et al. Journal of Materials Science, 2016, 51, 6062.
21 Lothenbach B, Pelletier-Chaignat L, Winnefeld F. Cement and Concrete Research, 2012, 42(12), 1621.
22 Gastaldi D, Paul G, Marchese L, et al. Cement and Concrete Research, 2016, 90, 162.
23 Ipavec A, Gabrovšek R, Vuk T, et al. Journal of the American Ceramic Society, 2011, 94(4), 1238.
24 Cuesta A, Ichikawa R U, Londono-Zuluaga D, et al. Cement and Concrete Research, 2017, 96, 1.
25 Zhang Y Y, Chang J, Zhao J Y. Journal of the American Ceramic Society, 2019, 102(4), 2165.
26 Simion A, Vasilescu M, Filip C, et al. Solid State Nuclear Magnetic Resonance, 2022, 117, 101773.
27 Ouffa N, Trauchessec R, Benzaazoua M, et al. Cement and Concrete Composites, 2022, 127, 104381.
28 Hu J Z, Zhang X, Jaegers N R, et al. The Journal of Physical Chemistry C, 2017, 121(49), 27555.
29 Hu C, Hou D, Li Z. Cement and Concrete Composites, 2017, 80, 10.
30 Ding W W, He Y J, Lu L N, et al. Journal of Thermal Analysis and Calorimetry, 2020, 141, 707.
31 Song F, Yu Z L, Yang F L, et al. Cement and Concrete Research, 2015, 71, 1.
32 Zhang Y Y, Zhao Q X, Gao Z M, et al. Cement and Concrete Research, 2021, 150, 106607.
[1] 李辰治, 蒋林华. 石灰石粉掺量对混凝土中钢筋脱钝临界氯离子含量的影响[J]. 材料导报, 2024, 38(1): 22090288-7.
[2] 刘源涛, 王琰帅, 董必钦. 偏铝酸钠激发石灰石粉的胶凝材料合成机理研究[J]. 材料导报, 2023, 37(1): 22030034-5.
[3] 罗素蓉, 贾旭秀, 王德辉. 碳铝酸盐对水泥-石灰石粉-矿粉胶凝体系抗氯离子渗透性能的影响[J]. 材料导报, 2022, 36(11): 21040039-6.
[4] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[5] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[6] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[7] 刘娟红, 李康, 宋少民, 卞立波. 石膏对石灰石粉水泥基材料水化及硬化性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 105-110.
[8] 张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed