Please wait a minute...
材料导报  2022, Vol. 36 Issue (11): 21040039-6    https://doi.org/10.11896/cldb.21040039
  无机非金属及其复合材料 |
碳铝酸盐对水泥-石灰石粉-矿粉胶凝体系抗氯离子渗透性能的影响
罗素蓉, 贾旭秀, 王德辉
福州大学土木工程学院,福州 350116
Effects of Carboaluminate on Anti-Chloride Ion Penetration Performance of Cement-Limestone Powder-Slag Cementitious Materials
LUO Surong, JIA Xuxiu, WANG Dehui
College of Civil Engineering, University of Fuzhou University, Fuzhou 350116, China
下载:  全 文 ( PDF ) ( 3507KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用单一质心设计法设计水泥-石灰石粉-矿粉水泥浆体胶凝体系,通过X射线衍射分析、热重分析、压汞分析,研究了碳铝酸盐对水泥浆体抗氯离子渗透性能、Friedel's盐和孔结构的影响。研究结果表明:和不掺石灰石粉相比,单掺25%、50%(质量分数)的石灰石粉水泥浆体的氯离子迁移系数分别增大了193.02%和534.50%;和单掺50%石灰石粉相比,复掺25%石灰石粉与25%矿粉水泥浆体的氯离子迁移系数减小了85.98%。碳铝酸盐含量随石灰石粉掺量的增加而增加,矿粉增大了碳铝酸盐的生成量。经过RCM试验后,各组样品中均未发现碳铝酸盐的衍射峰。单掺0%、25%、50%石灰石粉水泥浆体的Friedel's盐生成量分别为2.74%、2.94%、1.09%;和单掺50%石灰石粉相比,复掺25%石灰石粉和25%矿粉水泥浆体的Friedel's盐生成量增加了363.30%;石灰石粉掺量越多,水泥浆体的孔隙率和最可几孔径越大;和单掺50%石灰石粉相比,复掺25%石灰石粉和25%矿粉水泥浆体的孔隙率和最可几孔径分别减小了31.23%和57.84%。经过RCM试验后生成的Friedel's盐改善了水泥浆体的孔结构。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
罗素蓉
贾旭秀
王德辉
关键词:  石灰石粉  矿粉  氯离子迁移系数  碳铝酸盐  Friedel's盐    
Abstract: Byusing the simplex centroid design method, the cementitious system of cement-limestone powder-slag cement pastes was designed, and then effects of carboaluminate on the anti-chloride ion penetration performance, Friedel's salt and pore structure of cement pastes were also investigated through X-ray diffraction analysis, thermogravimetric analysis and mercury intrusion porosimetry. The results show that, the chloride migration coefficient of cement pastes with 25% and 50% limestone powder increased by 193.02% and 534.50%, respectively, compared with that of cement pastes without limestone powder; the chloride migration coefficient of cement pastes with 25% limestone powder and 25% slag decreased by 85.98%, compared with that of cement pastes with 50% limestone powder. The amount of carboaluminate increased with the increase of limestone powder. The incorporation of slag increased the content of carboaluminate. The diffraction peaks of carboaluminate were not found after RCM test. The amount of Friedel's salt of cement pastes with 0%, 25% and 50% limestone powder was 2.74%, 2.94%, 1.09%, respectively. Compared with cement pastes with 50% limestone powder, the amount of Friedel's salt of cement pastes with 25% limestone powder and 25% slag increased by 363.30%. The more limestone powder was added, the larger porosity and the most probable pore diameter of the cement pastes were. The porosity and the most probable pore diameter of cement pastes with 25% limestone powder and 25% slag decreased by 31.23% and 57.84%, respectively, compared with that of cement pastes with 50% limestone powder. The formation of Friedel's salt after RCM test improved the pore structure of cement pastes.
Key words:  limestone powder    slag    chloride migration coefficient    carboaluminate    Friedel's salt
发布日期:  2022-06-09
ZTFLH:  TU528  
基金资助: 国家自然科学基金(51608187;52078139)
通讯作者:  dhwang@fzu.edu.cn   
作者简介:  罗素蓉,福州大学教授、硕士研究生导师,兼任福建省“2011计划”环保节能型高性能混凝土协同创新中心副主任,福建省土木建筑学会常务理事、建筑材料学术委员会常务副会长,中国大坝工程学会大坝混凝土与岩石断裂力学专业委员会副主任。1983年,于福州大学获得本科学位。长期从事高性能混凝土和再生骨料混凝土研究,主持3项国家自然科学基金面上项目和1项国家自然科学基金海峡联合基金重点支持项目子课题,以第一作者或通讯作者发表20余篇高水平SCI/EI论文。
王德辉,福州大学土木工程学院副研究员、硕士研究生导师。2004年、2009年、2015年分别于华北水利水电大学、中南大学、湖南大学获得本科、硕士、博士学位。主持了1项国家重点研发计划项目子课题和1项国家自然基金青年科学基金项目,以第一作者或通讯作者发表了11篇SCI论文和4篇EI论文。参编会议论文集1部。多篇SCI论文在TOP期刊成为“The Most Downloaded Article”,并得到多次引用。担任国际著名期刊评审人,被Construction and Building Materials评为卓越审稿人。主要从事超高性能混凝土的凝结硬化、石灰石粉对水泥基材料凝结硬化和性能的影响、腐蚀性物质在FRP筋海水海砂混凝土中的传输特性和腐蚀机理等研究工作。
引用本文:    
罗素蓉, 贾旭秀, 王德辉. 碳铝酸盐对水泥-石灰石粉-矿粉胶凝体系抗氯离子渗透性能的影响[J]. 材料导报, 2022, 36(11): 21040039-6.
LUO Surong, JIA Xuxiu, WANG Dehui. Effects of Carboaluminate on Anti-Chloride Ion Penetration Performance of Cement-Limestone Powder-Slag Cementitious Materials. Materials Reports, 2022, 36(11): 21040039-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21040039  或          http://www.mater-rep.com/CN/Y2022/V36/I11/21040039
1 Weerdt D K, Kjellsen K O, Sallevold E, et al. Cement and Concrete Composites, 2011, 33(1), 38.
2 Tsivilis S, Asprogerakas A. Materials Science Forum,2010,636-637,1361.
3 Bertolini L, Lollini F, Redaelli E. RILEM Proceedings, PRO, 2010, 56, 1147.
4 ElgalhudL A A, Dhir R K, Ghataora G. Magazine of Concrete Research, 2018, 70(5-6), 313.
5 Li L G, Kwan A K H. Cement and Concrete Composites, 2015, 60, 24.
6 Lollini F, Redaelli E, Bertolini L. Cement and Concrete Composites, 2014, 46, 40.
7 Wang D H, Shi C J, Farzadnia N, et al. Construction and Building Materials, 2018, 192, 166.
8 Shi C J, Wang D H, Jia H F, et al. Journal of the Chinese Ceramic Society, 2017, 45(11), 1593(in Chinese).
史才军, 王德辉, 贾煌飞, 等. 硅酸盐学报, 2017, 45(11), 1593.
9 Yu B L, Wang L C, Shui Z H, et al. Bulletin of the Chinese Ceramic Society, 2020, 39(10), 3251(in Chinese).
余百炼, 王雷冲, 水中和, 等. 硅酸盐通报, 2020, 39(10), 3251.
10 Balonis M, Lothenbach B, Gwenet L S, et al. Cement and Concrete Research, 2010, 40(7), 1022.
11 Dhir R K, El-mohr M A K, Dyer T D. Cement and Concrete Research, 1997, 27(11), 1639.
12 Florea M V A, Brouwers H J H. Construction and Building Materials, 2014, 64, 430.
13 Yuan Q, Shi C J, Geert D S, et al. Construction and Building Materials, 2009, 23(1), 13.
14 Wang D H, Shi C J, Jia H F, et al. Materials Reports, 2018, 32(17), 2991(in Chinese).
王德辉, 史才军, 贾煌飞, 等. 材料导报, 2018, 32(17), 2991.
15 Sotiriadis K, Tsivilis S. Magazine of Concrete Research,2018,70(20),1051.
16 Shi C J, Wang D H, An X P, et al. Journal of the Chinese Ceramic Society, 2018, 46(2), 238(in Chinese).
史才军, 王德辉, 安晓鹏, 等. 硅酸盐学报, 2018, 46(2), 238.
17 Weerdt K D, Justnes H, Sellevold E, et al. Advances in Cement Research, 2011, 23(4), 214.
18 Xia J, Deng D H, Tang X Y,et al. Industrial Building, 2007(10), 75(in Chinese).
肖佳, 邓德华, 唐咸燕, 等. 工业建筑, 2007(10), 75.
19 Ogirigbo O R, Black L. Construction and Building Materials, 2017, 149, 825.
20 Sui S Y, Georget F, Maraghechi H, et al. Cement and Concrete Research, 2019, 124.
21 Zhang Z Q, Wang Q, Chen H H. Powder Technology, 2016, 301, 25.
22 Jia H F. Synergistic effects of limestone powder and supplementary cementitious materials in cement-based materials. Master's Thesis, Hunan University, China, 2017(in Chinese).
贾煌飞. 石灰石粉与辅助性胶凝材料在水泥基材料中的协同效应. 硕士学位论文, 湖南大学, 2017.
23 Wang D H, Shi C J, Farzadnia N, et al. Construction and Building Materials, 2019, 204, 69.
24 Wang Y Y, Shui Z H, Huang Y, et al. Construction and Building Materials, 2018, 174, 442.
25 Wang Y Y, Shui Z H, Gao X, et al. Construction and Building Mate-rials, 2019, 198, 217.
26 Tao Q. Journal of Wuhan University of Technology (Materials Science Edition), 2009, 24, 209.
27 He Z X. Effect of applied voltage on chloride ion binding behavior and microstructure of cement pastes. Master's Thesis, Hunan University, China, 2016(in Chinese).
何宗旭. 外加电压对水泥基材料氯离子结合及微观结构的影响研究. 硕士学位论文, 湖南大学, 2016.
28 Panesar D K, Aqel M, Rhead D, et al. Cement and Concrete Composites, 2017, 80, 189.
29 Tritthart J. Cement and Concrete Research, 1989, 19(5), 691.
30 Li C Z, Jiang L H, Li S S. Cement and Concrete Research, 2020, 131,106018.
31 Ma J, Yu Z Q, Ni C X, et al. Construction and Building Materials, 2019, 199, 695.
32 Tsivilis S, Tsantilas J, Kakali G, et al. Cement and Concrete Research, 2003, 33(9), 1471.
33 Wang D H, Shi C J, Farzadnia N, et al. Construction and Building Materials, 2018, 181, 672.
34 Balonis M, Glasser F P. Cement and Concrete Research,2009,39(9),739.
[1] 于泽明, 陈艳, 马嵘萍, 胡晓辰, 吕祥锋. 动/静荷载作用纤维-矿粉-聚苯乙烯混凝土吸能特征研究[J]. 材料导报, 2021, 35(z2): 669-677.
[2] 周祥, 赵华堂, 李亮, 杜浪, 周双福, 邵瞾, 张晓敏. Si-Mn矿粉粒度对复合胶凝体系水化机理和力学性能的影响[J]. 材料导报, 2021, 35(Z1): 279-283.
[3] 赵颖, 刘维胜, 王欢, 顾菲, 车玉君, 杨华山. 石灰石粉对3D打印水泥基材料性能的影响[J]. 材料导报, 2020, 34(Z2): 217-220.
[4] 王珩, 刘伟宝, 陆采荣, 梅国兴, 戈雪良, 杨虎. PL复合掺合料对骨料碱活性的抑制及孔溶液分析[J]. 材料导报, 2019, 33(z1): 214-218.
[5] 王德辉, 史才军, 贾煌飞. 石灰石粉和含铝相辅助性胶凝材料的协同作用对混凝土抗碳化性能的影响[J]. 材料导报, 2018, 32(17): 2986-2991.
[6] 刘娟红, 李康, 宋少民, 卞立波. 石膏对石灰石粉水泥基材料水化及硬化性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 105-110.
[7] 张兰芳,刘丽娜,曹 胜. 响应面方法优化碱激发矿渣-石粉水泥砂浆的研究[J]. 《材料导报》期刊社, 2017, 31(24): 15-19.
[8] 吴林妹, 史才军, 张祖华, 王浩. 钢纤维对超高性能混凝土干燥收缩的影响*[J]. CLDB, 2017, 31(23): 58-65.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed