Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22020188-6    https://doi.org/10.11896/cldb.22020188
  高分子与聚合物基复合材料 |
柠檬酸改性低分子量减水剂的合成、性能及机理
卢通1, 钱珊珊1,*, 刘晓2, 高瑞军3, 郑春扬1
1 江苏奥莱特新材料股份有限公司,江苏省(奥莱特)混凝土高分子助剂工程技术研究中心,南京 211505
2 北京工业大学材料与制造学部,北京 100124
3 中国建筑材料科学研究总院有限公司,北京 100024
Synthesis, Properties and Mechanism of Citric Acid Modified Low-molecular-weight Superplasticizers
LU Tong1, QIAN Shanshan1,*, LIU Xiao2, GAO Ruijun3, ZHENG Chunyang1
1 Jiangsu Province Engineering Research Center (ARIT) of Concrete Polymer Additives, Jiangsu ARIT New Materials Co., Ltd., Nanjing 211505, China
2 Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
3 China Building Materials Academy, Beijing 100024, China
下载:  全 文 ( PDF ) ( 5977KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以柠檬酸(CA)和聚乙二醇聚丙二醇单甲醚(MPEPPG)为主要反应原料,通过酯化反应合成一种柠檬酸改性低分子量减水剂(LMWS)。通过红外光谱、核磁氢谱和凝胶色谱测试获得合成减水剂的结构参数信息。同时通过动态光散射(DLS)、水泥净浆Zeta电位、减水剂对水泥的吸附性能、水泥净浆凝结时间、水泥水化热、水泥净浆塑性粘度、水泥净浆流动度及混凝土性能等研究对比了相同酸醚比(n(CA)∶n(MPEPPG)=1∶1)时不同分子量LMWS的综合性能。结果表明:相同掺量条件下,分子量适中的LMWS-3显著降低水泥净浆的塑性粘度并延缓水泥的水化进程,具有优异的初始分散和分散保持性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
卢通
钱珊珊
刘晓
高瑞军
郑春扬
关键词:  柠檬酸  酯化  低分子量减水剂  混凝土    
Abstract: Citric acid modified low-molecular-weight superplasticizers (LMWS) was prepared by esterification reaction with citric acid (CA) and methoxy polyethylene polypropylene glycols (MPEPPG) as main raw materials. The superplasticizers were tested by Fourier transform infrared spectrometer (FTIR), 1H nuclear magnetic resonance (1H NMR) and gel permeation chromatography (GPC) to obtain structural parameters. Meanwhile, the comprehensive performance of LMWS with the same acid-ether ratio (n(CA)∶n(MPEPPG)=1∶1) and different molecular weight was compared by the dynamic light scattering (DLS), Zeta potential of cement paste, the adsorption performance of superplasticizers on cement, setting time of cement paste, cement hydration heat, plastic viscosity, fluidity of cement paste and concrete performance. The results showed that under the condition of same dosage, LMWS-3 with moderate molecular weight significantly reduces the plastic viscosity of cement paste and delays the hydration process of cement, and also has excellent initial dispersion and dispersion retention performance.
Key words:  citric acid    esterification    low-molecular-weight superplasticizers    concrete
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528  
基金资助: 广西科技计划项目(AB20159011);北京工业大学与台北科技大学学术合作专题项目(NTUT-BJUT-110-04);长安大学中央高校基本科研业务费专项资金(300102311502)
通讯作者:  *钱珊珊,博士,高级工程师,江苏奥莱特新材料股份有限公司研发总监。以第一发明人授权中国发明专利35件、美国专利4件,发表学术论文30余篇,主要从事高性能混凝土、混凝土外加剂、混凝土耐久性及相关材料的研究与开发工作。aritqss@163.com   
作者简介:  卢通,硕士毕业于安徽建筑大学。现为江苏奥莱特新材料股份有限公司研发工程师,目前主要从事混凝土、混凝土外加剂等方面的研究工作。
引用本文:    
卢通, 钱珊珊, 刘晓, 高瑞军, 郑春扬. 柠檬酸改性低分子量减水剂的合成、性能及机理[J]. 材料导报, 2024, 38(2): 22020188-6.
LU Tong, QIAN Shanshan, LIU Xiao, GAO Ruijun, ZHENG Chunyang. Synthesis, Properties and Mechanism of Citric Acid Modified Low-molecular-weight Superplasticizers. Materials Reports, 2024, 38(2): 22020188-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22020188  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22020188
1 Aitcin P C. Cement and Concrete Research, 2000, 30(9), 1349.
2 Song J L, Zhou Z M, Li C C, et al. Materials Reports, 2014, 28(S2), 280 (in Chinese).
宋加乐, 周智密, 李禅禅, 等. 材料导报, 2014, 28(S2), 280.
3 Wang L, Zhao X, Gao R J, et al. New Building Materials, 2016, 43(7), 1 (in Chinese).
王玲, 赵霞, 高瑞军, 等. 新型建筑材料, 2016, 43(7), 1.
4 Ma J F, Wang T, Qi S, et al. Colloid and Polymer Science, 2018, 296(3), 503.
5 Qi S, Wang T, Fan S M, et al. Advances in Cement Research, 2019, 31(9), 399.
6 Qi S, Wang T, Han Z, et al. Advances in Cement Research, 2020, 32(11), 492.
7 Lei L, Zhang Y, Li R. Cement and Concrete Research, 2021, 147, 106504.
8 Ilg M, Plank J. Colloids and Surfaces A: Physicochemical and Enginee-ring Aspects, 2020, 587, 124307.
9 Xu Q, Xing F L, Xue H Y, et al. Chemical Industry and Engineering Progress, 2001, 21(8), 576 (in Chinese).
徐群, 邢凤兰, 薛红艳, 等. 化工进展, 2001, 21(8), 576.
10 Moschner G, Lothenbach B, Figi R, et al. Cement and Concrete Research, 2009, 39(4), 275.
11 Xia Q, Li X, Jiang L H. Materials Reports, 2011, 25(S2), 288 (in Chinese).
夏强, 李晓, 蒋林华. 材料导报, 2011, 25(S2), 288.
12 Wang W P, Lyu X Y, Ding W L, et al. New Building Materials, 2012, 39(7), 9 (in Chinese).
王文平, 吕晓勇, 丁伟良, 等. 新型建筑材料, 2012, 39(7), 9.
13 Lu S H, Liu G, Ma Y F, et al. Journal of Applied Polymer Science, 2010, 117(1), 273.
14 Ilg M, Plank J. Industrial & Engineering Chemistry Research, 2019, 58(29), 12913.
15 Tan H B, Zou F B, Ma B G, et al. Construction and Building Materials, 2016, 126, 617.
16 Qian S S, Yao Y, Wang Z M, et al. Materials Reports, 2021, 35(2), 2046 (in Chinese).
钱珊珊, 姚燕, 王子明, 等. 材料导报, 2021, 35(2), 2046.
17 Li H Q, Yao Y, Wang Z M, et al. Journal of the Chinese Ceramic Society, 2020, 48(2), 246 (in Chinese).
李慧群, 姚燕, 王子明, 等. 硅酸盐学报, 2020, 48(2), 246.
[1] 田威, 郭健, 王文奎, 张景生, 王凯星. 高温后混凝土毛细吸水特性的核磁共振分析及其力学性能研究[J]. 材料导报, 2025, 39(3): 23070160-7.
[2] 任凯, 张祖华, 邓毓琳, 胡捷, 史才军. 荷载-氯盐侵蚀耦合作用下矿渣基地质聚合物混凝土梁的受弯性能[J]. 材料导报, 2025, 39(3): 24030079-7.
[3] 纪泳丞, 王大洋, 贾艳敏. PVA纤维增强砖骨料再生混凝土数值模拟及尺寸效应研究[J]. 材料导报, 2025, 39(3): 23100214-11.
[4] 李克亮, 颜辰, 陈希, 陈爱玖, 杜晓蒙, 李伟华. 三种微生物矿化修复再生混凝土裂缝效果对比分析[J]. 材料导报, 2025, 39(2): 23120160-8.
[5] 杨海涛, 练鑫晟, 柳苗, 孙国文, 王伟. 混凝土全寿命周期固碳技术研究进展[J]. 材料导报, 2025, 39(2): 23120145-8.
[6] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[7] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[8] 杨淑雁, 徐宁阳. 多因素复合环境下钢筋与混凝土黏结性能研究进展[J]. 材料导报, 2025, 39(2): 23100224-10.
[9] 张凯帆, 王晓军, 王长龙, 胡凯建, 白云翼, 陈辰, 付兴帅. 废弃加气混凝土基胶凝材料协同锂渣制备充填料的研究[J]. 材料导报, 2025, 39(2): 23120264-8.
[10] 金伟良, 刘振东, 张军. 混凝土梁疲劳致力磁效应及数值模拟方法[J]. 材料导报, 2025, 39(1): 24010127-9.
[11] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[12] 张立卿, 边明强, 王云洋, 许开成, 陈梦成, 韩宝国. 自修复混凝土修复性能评估中的若干关键技术与方法研究综述[J]. 材料导报, 2024, 38(9): 22100028-23.
[13] 闫凯, 张倩, 黄彬超, 张鑫. 火灾下活性粉末混凝土梁斜截面承载性能研究[J]. 材料导报, 2024, 38(9): 22110018-8.
[14] 陈爽, 韦丽兰, 陈红梅, 关纪文. 海洋环境下BFRP筋增强珊瑚混凝土柱抗侵蚀性能[J]. 材料导报, 2024, 38(9): 22110088-10.
[15] 魏令港, 黄靓, 曾令宏. 基于改进特征筛选的随机森林算法对锂渣混凝土强度的预测研究[J]. 材料导报, 2024, 38(9): 22050319-6.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed