Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22030076-8    https://doi.org/10.11896/cldb.22030076
  高分子与聚合物基复合材料 |
植物纤维增强聚合物基复合材料湿热老化研究进展
张儒, 姜宁*, 徐家川, 李迪
山东理工大学交通与车辆工程学院,山东 淄博 255000
Research Progress on Hygrothermal Aging of Plant Fiber Reinforced Polymer Composites
ZHANG Ru, JIANG Ning*, XU Jiachuan, LI Di
School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, Shandong, China
下载:  全 文 ( PDF ) ( 25779KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 植物纤维具有材料成本低、来源丰富、可再生、可生物降解、比强度和比模量高等优点,以植物纤维代替合成纤维作为增强体制备的绿色复合材料引起了学术界和工业界的普遍关注,并初步应用于汽车、建筑、航空航天等领域。与传统合成纤维相比,植物纤维自身的多层次、多尺度结构和与生俱来的亲水性使得其增强聚合物基复合材料在服役过程中容易受水分和温度的影响,引起力学性能下降,可能导致整个结构的破损甚至失效,从而阻碍其应用和发展。近年来,学者们对植物纤维增强聚合物基复合材料湿热老化进行了相关的研究。本文从复合材料吸水行为、影响复合材料吸水的因素、湿热老化对复合材料力学性能的影响、复合材料界面失效机理、复合材料湿热老化机理和化学处理对复合材料湿热老化的影响等几个方面综述了国内外植物纤维增强聚合物基复合材料湿热老化研究现状,希望为研究植物纤维增强聚合物基复合材料湿热老化的学者提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张儒
姜宁
徐家川
李迪
关键词:  植物纤维  复合材料  湿热老化  老化机理    
Abstract: Plant fibers have their advantageous characteristics such as low cost, wide sources, renewability, biodegradability, high specific modulus and strength. Now, the green composites prepared with plant fiber instead of synthetic fiber have attracted extensive attention from academia and industry, and have been preliminarily used in automotive, construction, aerospace and other fields. Compared to traditional synthetic fibres, plant fiber has multi-layered and multi-scale structure and inherent hydrophilicity which make its reinforced polymer matrix composite susceptible to the effects of moisture and temperature during service. These can cause a deterioration in mechanical properties and the damage or even failure of the whole structure, thus hindering the application and development of plant fiber composites. In recent years, some researchers have studied the hygrothermal aging mechanism of plant fiber reinforced polymer matrix composites. This paper reviews the current research of water absorption behavior, factors affecting water absorption, influence of hygrothermal aging on mechanical properties, interface failure mechanism, hygrothermal aging mechanism and influence of chemical treatment on hygrothermal aging of plant fiber reinforced composites. It is expected to provide refe-rences for further research in this field.
Key words:  plant fiber    composite    hydrothermal aging    aging mechanism
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TB332  
基金资助: 山东省自然科学基金青年项目(ZR2020QA040);中国博士后科学基金(2021M691853)
通讯作者:  *姜宁,2018年在同济大学获得博士学位,现为山东理工大学交通与车辆工程学院讲师、硕士研究生导师。主要从事先进复合材料耐久性、复合材料高性能化、汽车轻量化技术及应用等研究工作。先后主持中国博士后基金1项、山东省自然科学基金项目1项,与企业合作完成多项横向课题,参与国家级科研项目3项。发表学术论文10余篇,其中SCI论文8篇。jiangning@sdut.edu.cn   
作者简介:  张儒,2020年在山东理工大学取得本科学位,现为山东理工大学交通与车辆工程学院硕士研究生,主要研究领域为植物纤维增强聚合物基复合材料湿热老化。
引用本文:    
张儒, 姜宁, 徐家川, 李迪. 植物纤维增强聚合物基复合材料湿热老化研究进展[J]. 材料导报, 2024, 38(2): 22030076-8.
ZHANG Ru, JIANG Ning, XU Jiachuan, LI Di. Research Progress on Hygrothermal Aging of Plant Fiber Reinforced Polymer Composites. Materials Reports, 2024, 38(2): 22030076-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22030076  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22030076
1 Zhang C H, Wang R H, Chen Q L, et al. Materials Reports, 2007, 21(10), 35 (in Chinese).
张春红, 王荣华, 陈秋玲, 等. 材料导报, 2007, 21(10), 35.
2 Estrada L H, Pillay S, Vaidya U. In: Conference Record of the 2008 ACCE 4th Annual Automotive Composites Conference and Exhibition. Michigan, 2008, pp. 16.
3 Bax B, Müssig J. Composites Science and Technology, 2008, 68(7), 1601.
4 Oksman K, Skrifvars M, Selin J F. Composites Science and Technology, 2003, 9(63), 1317.
5 Yeo J C C, Muiruri J K, Thitsartarn W, et al. Materials Science and Engineering C, 2018, 92, 1092.
6 Tong S Y, Lim P N, Wang K, et al. Materials Technology, 2018, 33(11), 754.
7 Gorshkova T, Brutch N, Chabbert B, et al. Critical Reviews in Plant Sciences, 2012, 31(3), 201.
8 Bessadok A, Langevin D, Gouanvé F, et al. Carbohydrate Polymers, 2009, 76(1), 74.
9 Moudood A, Rahman A, Öchsner A, et al. Journal of Reinforced Plastics and Composites, 2019, 38(7), 323.
10 Silva A M B, Luz S M, Siva I, et al. Sustainable Polymer Composites and Nanocomposites, 2019, 977, 999.
11 Biagiotti J, Puglia D, Kenny J M. Journal of Natural Fibers, 2004, 1(2), 37.
12 Kabir M M, Wang H, Lau K T, et al. Composites Part B: Engineering, 2012, 43(7), 2883.
13 Bian J Y, Liu J, Bao Z. Materials Reports, 2016, 30(Z2), 340 (in Chinese).
边佳燕, 刘钧, 鲍铮. 材料导报, 2016, 30(Z2), 340.
14 Idolor O, Guha R, Berkowitz K, et al. In: Conference Record of the 2020 35th Proceedings of the American Society for Composites 35th Technical Conference. North Carolina, 2020, pp. 27695.
15 Scida D, Assarar M, Poilâne C, et al. Composites Part B: Engineering, 2013, 48, 51.
16 Abanilla M A, Li Y, Karbhari V M. Composites Part B: Engineering, 2005, 37(2), 200.
17 Weitsman Y. International Journal of Solids & Structures, 1979, 15(9), 701.
18 Weitsman Y J. International Journal of Solids and Structures, 1987, 23(7), 1003.
19 Weitsman Y, Beltzer A I. International Journal of Solids and Structures, 1992, 29(11), 1417.
20 Saikia D. International Journal of Thermophysics, 2010, 31(4), 1020.
21 Jiang N, Li Y, Li D, et al. Composites Science and Technology, 2020, 199, 108313.
22 Kumar S, Meena R S, Singh R K, et al. Scientific Reports, 2021, 11(1), 1.
23 Panthapulakkal S, Sain M. Journal of Composite Materials, 2007, 41(15), 1871.
24 Moudood A, Rahman A, Khanlou H M, et al. Composites Part B: Engineering, 2019, 171, 284.
25 Jiang N, Li Y, Li Y, et al. Polymer Degradation and Stability, 2020, 178, 109214.
26 Duigou L A, Davies P, Baley C. Polymer Degradation and Stability, 2009, 94(7), 1151.
27 Bledzki A K, Faruk O. Composites Science and Technology, 2004, 64(5), 693.
28 Al-Maharma A Y, Al-Huniti N. Journal of Composites Science, 2019, 3(1), 27.
29 Toubal L, Cuillière J C, Bensalem K, et al. Polymer Composites, 2016, 37(8), 2342.
30 Singh J I P, Singh S, Dhawan V. Polymers and Polymer Composites, 2020, 28(4), 273.
31 Chen H, Miao M, Ding X. Composites Part A: Applied Science and Manufacturing, 2009, 40(12), 2013.
32 Peirce F T. Journal of the Textile Institute Transactions, 1929, 20(6), 133.
33 Dhakal H N, Zhang Z Y, Bennett N, et al. Journal of Composite Mate-rials, 2014, 48(11), 1399.
34 Kushwaha P K, Kumar R. Polymer-Plastics Technology and Engineering, 2009, 49(1), 45.
35 Cheour K, Assarar M, Scida D, et al. Composite Structures, 2016, 152, 259.
36 Jiang N, Li Y, Yu T, et al. Polymer Composites, 2020, 41(3), 1003.
37 Jia Y L. Acta Materiae Compositae Sinica, 2022, 39(2), 608 (in Chinese).
贾云龙. 复合材料学报, 2022, 39(2), 608.
38 Pisupati A, Bonnaud L, Deléglise-Lagardère M, et al. Applied Composite Materials, 2021, 28(3), 633.
39 Panthapulakkal S, Sain M. Journal of Applied Polymer Science, 2007, 103(4), 2432.
40 Espert A, Vilaplana F, Karlsson S. Composites Part A: Applied Science and Manufacturing, 2004, 35(11), 1267.
41 Assarar M, Scida D, El Mahi A, et al. Materials & Design, 2011, 32(2), 788.
42 Stamboulis A, Baillie C A, Garkhail S K, et al. Applied Composite Materials, 2000, 7(5), 273.
43 Hu R H, Sun M, Lim J K. Materials & Design, 2010, 31(7), 3167.
44 Chizyuka C G, Munakaampe G M, Kanyanga S B. Journal of Natural and Applied Sciences, 2016, 2(1), 39.
45 Stamboulis A, Baillie C A, Peijs T. Composites Part A: Applied Science and Manufacturing, 2001, 32(8), 1105.
46 Li Y, Xue B. Polymer Degradation and Stability, 2016, 126, 144.
47 Duigou L A, Davies P, Baley C. Composites Part A: Applied Science and Manufacturing, 2013, 48, 121.
48 Zhou Y, Fan M, Chen L. Composites Part B: Engineering, 2016, 101, 31.
49 Amiandamhen S O, Meincken M, Tyhoda L. Fibers and Polymers, 2020, 21(4), 677.
50 Brodowsky H, Mäder E. Composites Science and Technology, 2012, 72(10), 1160.
51 Sethi S, Ray B C. Advances in Colloid and Interface Science, 2015, 217, 43.
52 Azwa Z N, Yousif B F, Manalo A C, et al. Materials & Design, 2013, 47, 424.
53 Jiang N, Yu T, Li Y. Journal of Polymers and the Environment, 2018, 26(8), 3176.
54 Jiang N, Yu T, Li Y, et al. Composites Science and Technology, 2019, 173, 15.
55 Cadu T, Van Schoors L, Sicot O, et al. Industrial Crops and Products, 2019, 141, 111730.
56 Paunonen S, Berthold F, Immonen K. Journal of Applied Polymer Science, 2020, 137(42), 49617.
57 Si S, Tang Q, Li X G. Journal of Renewable Materials, 2021, 9(12), 2209.
58 Yu T, Sun F, Lu M, et al. Polymer Composites, 2018, 39(4), 1098.
59 Ma Y F, Zhang W, Wang C P, et al. Materials Reports, 2011, 25(19), 5 (in Chinese).
马玉峰, 张伟, 王春鹏, 等. 材料导报, 2011, 25(19), 5.
60 Wang W, Fu R, Deng Q, et al. Fibers and Polymers, 2020, 21(12), 2888.
61 George J, Sreekala M S, Thomas S. Polymer Engineering & Science, 2001, 41(9), 1471.
62 Hamid M R Y, Ghani M H A, Ahmad S. Industrial Crops & Products, 2012, 40, 96.
63 Dittenber D B, Gangarao H. Composites Part A, 2012, 43(8), 1419.
64 Fiore V, Bella G D, Valenza A. Composites Part B:Engineering, 2015, 68, 14.
65 Han Y H, Han S O, Cho D, et al. Composite Interfaces, 2007, 14(5), 559.
66 Li X, Tabil L G, Panigrahi S. Journal of Polymers and the Environment, 2007, 15(1), 25.
67 Jain D, Kamboj I, Bera T K, et al. International Journal of Heat and Mass Transfer, 2019, 130, 431.
68 Atiqah A, Jawaid M, Ishak M R, et al. Journal of Natural Fibers, 2018, 15(2), 251.
69 Mouhoubi S, Bourahli M E H, Osmani H, et al. Journal of Natural Fibers, 2017, 14(2), 239.
70 Daniels M W, Francis L F. Journal of Colloid and Interface Science, 1998, 205 (1), 191.
71 Nishiyama N, Horie K, Asakura T. Journal of Colloid and Interface Science, 1989, 129(1), 113.
72 Vrancken K C, De Coster L, Van Der Voort P, et al. Journal of Colloid and Interface Science, 1995, 170(1), 71.
73 Salon M C B, Gerbaud G, Abdelmouleh M, et al. Magnetic Resonance in Chemistry, 2007, 45(6), 473.
74 Kusmono, Hestiawan H, Jamasri. Journal of Materials Research and Technology, 2020, 9(3), 4410.
75 Supri A G, Lim B Y. Journal of Physical Science, 2009, 20(2), 85.
76 Siqueira G, Bras J, Dufresne A. Langmuir, 2010, 26(1), 402.
77 Karmarkar A, Chauhan S S, Modak J M, et al. Composites Part A: Applied Science and Manufacturing, 2007, 38(2), 227.
78 Rozman H D, Kumar R N, Khalil H P S A, et al. European Polymer Journal, 1997, 33(8), 1213.
79 Khalil H P S A, Rozman H D, Ahmad M N, et al. Polymer-Plastics Technology and Engineering, 2000, 39(4), 757.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[3] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[4] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[5] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[6] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[7] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[10] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[11] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[12] 郑孝源, 任志英, 吴乙万, 白鸿柏, 黄健萌, 谭桂斌. 金属橡胶-聚氨酯复合材料减振性能研究[J]. 材料导报, 2024, 38(6): 22050144-7.
[13] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[14] 陈悦, 黄静, 朱子旭, 李华东. 面芯脱粘缺陷对复合材料夹芯圆柱壳屈曲特性影响分析[J]. 材料导报, 2024, 38(5): 23070044-6.
[15] 柯松, 陈卓坤, 艾诚, 李尧, 虢婷, 孙志平. 非晶合金薄膜的复合强韧化研究进展[J]. 材料导报, 2024, 38(5): 22090022-9.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed