Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 63-68    https://doi.org/10.11896/j.issn.1005-023X.2017.024.013
  第一届先进胶凝材料研究与应用学术会议 |
超疏水沥青混凝土抗凝冰性能及评价
高英力1,2,代凯明2,李学坤2,马 路2,何 倍2
1 山西省交通科学研究院,黄土地区公路建设与养护技术交通行业重点实验室,太原 030006;
2 长沙理工大学交通运输工程学院,长沙 410114
Performance and Evaluation of Anti-icing Super-hydrophobic Asphalt Concrete
GAO Yingli1,2, DAI Kaiming2, LI Xuekun2, MA Lu2, HE Bei2
1 Key Laboratory of Highway Construction & Maintenance Technology of Transportation Industry in Loess Region, Shanxi Transportation Research Institute, Taiyuan 030006;
2 School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114
下载:  全 文 ( PDF ) ( 852KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 引入超疏水设计理念,制备了具有超疏水抗凝冰性能的沥青混凝土试件。通过模拟试验和理论分析相结合,开展了超疏水沥青混凝土抗凝冰性能研究,测定了普通试件及超疏水试件抗凝冰性能差异,分析了不同工况下超疏水沥青混凝土试件的抗凝冰性能。通过接触角测定及表面能计算,评价了超疏水沥青混凝土的防冰、疏冰性能。结果表明,超疏水沥青混凝土可有效促进液滴滚落,滚落率高达80%。通过自行设计的落锤冲击试验间接测定了超疏水沥青混凝土试件的“冰-路”附着力,仅为普通沥青混凝土试件的38.5%。基于不同工况,降雪环境下超疏水沥青混凝土试件冰的残留率最低。接触角试验和表面能计算表明,超疏水沥青混凝土的表面能为1.97 mJ/m2,仅为普通沥青混凝土的5.1%,体现了良好的抗凝冰性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
高英力
代凯明
李学坤
马 路
何 倍
关键词:  超疏水  抗凝冰  沥青混凝土  评价  表面能    
Abstract: Asphalt concrete specimens with super hydrophobicity and ice resistance were made through introducing the principle of super hydrophobicity. The difference of anti-icing performance of common specimens and super hydrophobic specimens, the difference of anti-icing performance of super hydrophobic asphalt concrete under different environments were tested by simulation test and theoretical analysis. Anti-icing performance of super hydrophobic asphalt concrete was evaluated by contact angle and surface energy. The results showed that super-hydrophobic asphalt concrete could promote the drop of water, the dropping rate could reach 80%. The adhesion between ice and road surface was measured indirectly by self-designed impact test, and the adhesion was 38.5% of the ordinary specimen. The residual rate of ice on the specimen was the least in snowy conditions. The surface energy of super hydrophobic asphalt concrete was 1.97 mJ/m2, which was measured by the measurement of contact angle and the calculation of surface energy, it was only 5.1% of ordinary asphalt concrete and showed a good anti-icing performance.
Key words:  super-hydrophobicity    anti-icing    asphalt concrete    simulation test    surface energy
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  U416  
基金资助: 湖南省交通厅科技计划项目(201313);黄土地区公路建设与养护技术交通行业重点实验室和山西省重点实验室开放课题(KLTLR-Y14-12)
作者简介:  高英力:男,1977年生,博士,教授,主要研究方向为道路工程材料 E-mail:yingligao@126.com
引用本文:    
高英力,代凯明,李学坤,马 路,何 倍. 超疏水沥青混凝土抗凝冰性能及评价[J]. 《材料导报》期刊社, 2017, 31(24): 63-68.
GAO Yingli, DAI Kaiming, LI Xuekun, MA Lu, HE Bei. Performance and Evaluation of Anti-icing Super-hydrophobic Asphalt Concrete. Materials Reports, 2017, 31(24): 63-68.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.013  或          https://www.mater-rep.com/CN/Y2017/V31/I24/63
1 Zeng B, Yan C X, Yu L, et al. Analysis of winter temperature in south china during 1960-2009[J]. Plateau Mountain Meteorology Res, 2016,36(2):46(in Chinese).
曾波, 闫彩霞, 余莲,等. 我国南方地区1960-2009年冬季气温分析[J]. 高原山地气象研究, 2016,36(2):46.
2 Tan Y Q, Zhao L D, Lan B W, et al. Performance of asphalt mixture under repeated condensation of ice[J]. J Build Mater, 2011,14(6):761(in Chinese).
谭忆秋, 赵立东, 蓝碧武,等. 反复凝冰作用下沥青混合料性能研究[J]. 建筑材料学报, 2011,14(6):761.
3 Yu W B, Li S Y, Feng W J, et al. Snow and ice melting techniques of pavement: State of the art and development tendency[J]. J Gla-ciology Geocryology, 2011(4):933(in Chinese).
喻文兵,李双洋,冯文杰,等. 道路融雪除冰技术现状与发展趋势分析[J]. 冰川冻土, 2011(4):933.
4 Xiao Q Y, Hu H X, Wang L J, et al. Study on erosion of new dei-cing salt on asphalt mixture based on surface energy theory[J]. J Hebei University of Technology, 2012,41(4):64(in Chinese).
肖庆一, 胡海学, 王丽娟,等. 基于表面能理论的除冰盐侵蚀沥青-矿料界面机理研究[J].河北工业大学学报, 2012,41(4):64.
5 Kang J. The research on anticoagulant mixture of ice[D]. Chongqing: Chongqing Jiaotong University, 2011(in Chinese).
康捷. 抗凝冰沥青混合料技术研究[D]. 重庆:重庆交通大学, 2011.
6 Xu R, Ma Y Z, Xiao X Y, et al. Progress in biomimetic superhydrophobic surface coating[J]. New Chemical Materials, 2009,37(12):1(in Chinese).
徐蕊, 马英子, 肖新颜, 等. 仿生超疏水涂层材料研究新进展[J]. 化工新型材料, 2009,37(12):1.
7 Arabzadeh A, Ceylan H, Kim S. Superhydrophobic coatings on asphalt concrete surfaces: Toward smart solutions for winter pavement maintenance[J]. National Res Council, 2016,2551:10.
8 Konstantin S, Michael N, Tom K. Anti-icing and de-icing superhydrophobic concrete to improve the safety on critical elements on roadway pavements[R]. Report No. CFIRE07-03, National Center for Freight & Infrastructure Research & Education, 2013.
9 Konstantin S, Habib T, Jian Z. Superhydrophobic engineered cementitious composites for highway applications: Phase I[R]. Report No. CFIRE 04-09, National Center for Freight & Infrastructure Research & Education, 2013.
10Konstantin S, Habib T, Jian Z. Superhydrophobic engineered cementitious composites for highway bridge applications: Technology transfer and implementation[R]. Report No. CFIRE06-03, National Center for Freight & Infrastructure Research & Education, 2013.
11Scott M, Ismael F V, Konstantin S. Hydrophobic engineered cementitious composites for highway applications[J]. Cem Concr Compos, 2015,57(3):68.
12Li X Y, Yang B B, Zhang Y Q. A study on super-hydrophobic coa-ting in anti-icing of glass/porcelain insulator[J]. J Sol-Gel Sci Technol, 2014,69(2):441.
13Xiao J, Chaudhuri S. Design of anti-icing coatings using supercooled droplets as nano-to-microscale probes[J]. Langmuir, 2012,28:4434.
14Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997,202(1):1.
15Sun B. Fabrication of superhydrophobic surface on cooper and its application in anti-icing and anti-frosting[D]. Nanjing: Nanjing University of Science and Technology, 2014(in Chinese).
孙宝. 铜基超疏水界面构筑及抗结冰、抗结霜性能研究[D]. 南京:南京理工大学, 2014.
16Wang H, Gu G H, Qiu G Z, et al. Evaluation of surface free energy of polymers by contact angle goniometry[J]. J Central South University (Science and Technology), 2006,37(5):942(in Chinese).
王晖, 顾帼华, 邱冠周, 等. 接触角法测量高分子材料的表面能[J]. 中南大学学报(自然科学版), 2006,37(5):942.
17Liu Y M, Shi J Y, Lu Q Q, et al. Research progress on calculation of solid surface tension based on Young’s equation[J]. Mater Rev:Rev, 2013,27(6):123(in Chinese).
刘永明, 施建宇, 鹿芹芹,等. 基于杨氏方程的固体表面能计算研究进展[J]. 材料导报:综述篇, 2013,27(6):123.
18Van O C J, Chaudhury M K, Good R J. Interfacial Lifshitz-van der Waals and polar interactions in macroscopic systems[J]. Chem Rev, 1988,88(6):927.
19Van O C J, Chaudhury M K, Good R J. The mechanism of phase separation of polymers in organic media-apolar and polar systems[J]. Separation Sci Technol, 1989,24(1-2):15.
20Chen Y, Shan L Y, Tan Y Q, et al. Research on functional repairing material for asphalt pavement to resist condensate ice damage[J]. J Build Mater, 2013,16(3):529(in Chinese).
陈瑶, 单丽岩, 谭忆秋,等. 沥青路面抗凝冰损伤功能性修复材料试验研究 [J]. 建筑材料学报, 2013,16(3):529.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[3] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[4] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[5] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[6] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[7] 郭冰冰, 储嘉, 王艳, 牛荻涛. 碳化养护混凝土生命周期环境影响的评估[J]. 材料导报, 2024, 38(24): 23070186-10.
[8] 于晓涵, 李秀领, 马锐, 孙昊东, 苏振鹏. 基于LCA理论的装配式高延性再生微粉混凝土结构碳排放研究[J]. 材料导报, 2024, 38(23): 23070172-7.
[9] 李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
[10] 董素芬, 宋泽轩, 张文辉, 黄智德, 韩宝国. 热诱导自愈合沥青混凝土研究综述:一种可持续路面材料[J]. 材料导报, 2024, 38(22): 23080062-12.
[11] 虞将苗, 冯致皓, 陈富达, 于华洋. 乳化沥青冷再生路面研究进展:材料特性、组成设计及性能评价[J]. 材料导报, 2024, 38(22): 24030095-10.
[12] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[13] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[14] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[15] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed