Please wait a minute...
材料导报  2024, Vol. 38 Issue (23): 23080075-12    https://doi.org/10.11896/cldb.23080075
  高分子与聚合物基复合材料 |
光伏应用超疏水自清洁涂层材料的研究进展
李承刚1,2, 吴石莲1,2, 常国华1,2, 关润泽1,2, 周炳见1,2, 杨彤1,2, 杨宇1,2,*
1 云南大学材料与能源学院,云南省光电信息材料国际联合研究中心,昆明 650504
2 云南大学材料与能源学院,国家光电子能源材料国际联合研究中心,昆明 650504
Research Progress on Superhydrophobic Self-cleaning Coatings for Photovoltaic Applications
LI Chenggang1,2, WU Shilian1,2, CHANG Guohua1,2, GUAN Runze1,2, ZHOU Binjian1,2, YANG Tong1,2, YANG Yu1,2,*
1 Yunnan International Joint Research Center for Photoelectric Information Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
2 International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
下载:  全 文 ( PDF ) ( 23177KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自清洁涂层材料,特别是透明超疏水自清洁涂层材料,具有制备方便、成本低廉、自清洁能力优异等优势,对于解决光伏器件长期使用过程中因表面污染导致性能下降的问题具有重要价值。本文从超疏水涂层材料理论的发展出发,综述了光伏应用超疏水自清洁涂层材料的研究进展,介绍了自清洁涂层材料的制备技术、结构组成、性能特点和应用实例,并对光伏应用超疏水自清洁涂层材料的发展方向和应用前景进行了展望,可为光伏应用超疏水自清洁涂层材料的研发与工业化应用提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李承刚
吴石莲
常国华
关润泽
周炳见
杨彤
杨宇
关键词:  涂层  超疏水  自清洁  光伏    
Abstract: Self-cleaning coatings, especially transparent superhydrophobic self-cleaning coating, have lots of advantages such as easy preparation, low cost, and excellent self-cleaning ability etc, which have significant application value in the degradation of photovoltaic devices caused by surface contamination in the course of long-term use. In this paper, the research progress of superhydrophobic self-cleaning coatings for photovoltaic applications is reviewed, mainly on the perspectives of preparation, structural compositions, performance characteristics, and application examples. The development direction and application prospect of superhydrophobic self-cleaning coatings for photovoltaic applications are introduced. It may provides some reference for the R&D and industrial production applications of superhydrophobic self-cleaning coatings of photovoltaic applications.
Key words:  coating    superhydrophobic    self-cleaning    photovoltaic
出版日期:  2024-12-10      发布日期:  2024-12-10
ZTFLH:  TQ638  
基金资助: 中央引导地方科技发展基金(202307AB110010);云南省兴滇人才云岭学者研究项目(KC194317)
通讯作者:  * 杨宇,云南大学材料与能源学院教授、博士研究生导师,云岭学者,云南省中青年学术和技术带头人。1991年于中国科学院等离子物理所等离子体物理专业硕士毕业,1995年复旦大学物理系凝聚态物理专业博士毕业,随后到中国科学院上海冶金研究所从事博士后的研究工作。1997年至今在云南大学工作,其中在2006年到2008年间,以访问学者的身份在哈佛大学工程与应用学院进行科学研究。主持国家自然科学基金、云南省重点基金、中央引导地方科技发展专项等各类项目20多项,带领学术团队先后获中国青年科技奖、云南省自然科学一等奖及二等奖等各类奖励10余项。担任全国人工晶体标准化技术委员会委员、中国兵工学会夜视技术专业委员会委员;担任《材料导报》《人工晶体学报》《红外技术》等学术期刊编委。目前主要研究领域包括高效硅基太阳电池、光电子能源材料、硅/有机彩色自清洁太阳能电池等。yuyang@ynu.edu.cn   
作者简介:  李承刚,2021年6月毕业于西南大学材料与能源学院材料物理专业,获得工学学士学位。现为云南大学材料与能源学院硕士研究生,在杨宇教授的指导下进行研究。主要研究方向为光伏应用超疏水自清洁涂层的制备与应用。
引用本文:    
李承刚, 吴石莲, 常国华, 关润泽, 周炳见, 杨彤, 杨宇. 光伏应用超疏水自清洁涂层材料的研究进展[J]. 材料导报, 2024, 38(23): 23080075-12.
LI Chenggang, WU Shilian, CHANG Guohua, GUAN Runze, ZHOU Binjian, YANG Tong, YANG Yu. Research Progress on Superhydrophobic Self-cleaning Coatings for Photovoltaic Applications. Materials Reports, 2024, 38(23): 23080075-12.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23080075  或          http://www.mater-rep.com/CN/Y2024/V38/I23/23080075
1 Mani M, Pillai R. Renewable and Sustainable Energy Reviews, 2010, 14(9), 3124.
2 Adak D, Ghosh S, Chakrabarty P, et al. Solar Energy, 2017, 155, 410.
3 Zhao B, Zhang S, Cao S, et al. Clean Technologies and Environmental Policy, 2019, 21(8), 1645.
4 Li H J, Fan W Z, Pan H H, et al. Chemical Physics Letters, 2017, 667, 20.
5 Karthik D, Pendse S, Sakthivel S, et al. Solar Energy Materials and Solar Cells, 2017, 159, 204.
6 Huang Q S, Xu L J. New Chemical Materials, 2020, 48(5), 219 (in Chinese).
黄启舒, 许里杰. 化工新型材料, 2020, 48(5), 219.
7 Hooda A, Goyat M S, Pandey J K, et al. Progress in Organic Coatings, 2020, 142, 10557.
8 Zheng Z R, Sun X T, Gu B F, et al. Acta Optica Sinica, 2006(10), 1483 (in Chinese).
郑臻荣, 孙旭涛, 顾培夫, 等. 光学学报, 2006(10), 1483.
9 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65.
10 Wenzel R N. Industrial & Engineering Chemistry, 2002, 28(8), 988.
11 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546.
12 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1.
13 Bico J, Thiele U, Quéré D. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1), 41.
14 Abraham M. Langmuir: the ACS journal of surfaces and colloids, 2004, 20(9), 3517.
15 Lafuma A, Quere D. Nature Materials, 2003, 2(7), 457.
16 Jiang L. Science & Technology Review, 2005(2), 4 (in Chinese).
江雷. 科技导报, 2005(2), 4.
17 Furmidge C G L. Journal of Colloid Science, 1962, 17(4), 309.
18 Chen W, Fadeev A Y, Hsieh M C, et al. Langmuir, 1999, 15(10), 3395.
19 Mahadik S A, Parale V, Vhatkara R S, et al. Applied Surface Science, 2013, 277, 67.
20 Wu Y, Zhou Z, Tuo Y, et al. Materials Chemistry and Physics, 2015, 149-150, 522.
21 Isakov K, Kauppinen C, Franssila S, et al. ACS Applied Materials & Interfaces, 2020, 12(44), 49957.
22 Li G, Chen T, Yan B, et al. Applied Physics Letters, 2008, 92(17), 173104.
23 Sriram S, Kumar A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 271.
24 Ren T, He J. ACS Applied Materials & Interfaces, 2017, 9(39), 34367.
25 Xu Q F, Wang J N, Sanderson K D. ACS Nano, 2010, 4(4), 2201.
26 Bake A, Merah N, Matin A, et al. Progress in Organic Coatings, 2018, 122, 170.
27 Li X, Li B, Li Y, et al. Chemical Engineering Journal, 2021, 404, 126504.
28 Lu Z, Xu L, He Y, et al. Thin Solid Films, 2019, 692, 137560.
29 Wu Y, Tan X, Wang Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127919.
30 Hooda A, Goyat M S, Kumar A, et al. Materials Letters, 2018, 233, 340.
31 Xue C H, Wu Y, Guo X J, et al. Cellulose, 2020, 27(6), 3455.
32 Gurav A B, Shi H, Duan M, et al. Chemical Engineering Journal, 2021, 416, 127809.
33 Wang D, Sun Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55.
34 Oehler G C, Lisco F, Bukhari F, et al. Energies, 2020, 13(2), 299.
35 Kim J K, Mai Y W. Materials science and technology, American Cancer Society, USA, 2006, pp.241.
36 Zhu Y, Shen C, Li J, et al. Materials Chemistry and Physics, 2021, 257, 123828.
37 Wang L F, Zhao Y, Jiang L, et al. Chemical Journal of Chinese Universities, 2009, 30(4), 731 (in Chinese).
王丽芳, 赵勇, 江雷, 等. 高等学校化学学报, 2009, 30(4), 731.
38 Burkarter E, Saul C K, Thomazi F, et al. Surface and Coatings Techno-logy, 2007, 202(1), 194.
39 Bao Y, Tang P, Shi X, et al. The Journal of Adhesion, 2021, 98(12), 1801.
40 Kosak S C, Yilgör E, Yilgör I. Polymer, 2015, 62, 118.
41 Wu X, Wyman I, Zhang G, et al. Progress in Organic Coatings, 2016, 90, 463.
42 Ko K, Yoon D, Yang S C, et al. Journal of Industrial and Engineering Chemistry, 2022, 106, 460.
43 Wang Z, Yang A, Tan X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124998.
44 Peng C, Chen Z, Tiwari M K. Nature Materials, 2018, 17(4), 355.
45 Ren L F, Xia F, Shao J, et al. Desalination, 2017, 404, 155.
46 Liu H, Huang J, Chen Z, et al. Chemical Engineering Journal, 2017, 330, 26.
47 Rin Y C, Shanmugasundaram A, Lee D W. Applied Surface Science, 2022, 583, 152500.
48 Zhang C, Kalulu M, Sun S, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2019, 570, 147.
49 Zhi J, Zhang L Z. Applied Surface Science, 2018, 454, 239.
50 Li W, Liu K, Zhang Y, et al. Chemical Engineering Journal, 2022, 446, 137195.
51 Liu J, Sun Y, Zhou X, et al. Advanced Materials, 2021, 33(23), 2100237.
52 Chu D, Yao P, Huang C. Optics and Laser Technology, 2021, 136, 106790.
53 Ke C, Zhang C, Wu X, et al. Thin Solid Films, 2021, 723(1), 138583.
54 Liu R, Sun T, Liu J, et al. Nanotechnology, 2016, 27(25), 254006.
55 Pei M, Huo L, Zhang K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 123984.
56 Ma J, Ai Y, Kang L, et al. Nanoscale Research Letters, 2018, 13(1), 332.
57 Lee S Y, Rahmawan Y, Yang S. ACS Applied Materials & Interfaces, 2015, 7(43), 24197.
58 Lyu J, Wu B, Wu N, et al. Chemical Engineering Journal, 2021, 404, 126456.
59 Siri R, Thongrom S, Van D P, et al. Thin Solid Films, 2019, 686, 137429.
60 Gong B, Ma L, Guan Q, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107884.
61 Zhao Y, Xu T, Hu J M. Chemical Engineering Journal, 2022, 450, 136557.
62 Sun H, Xi Y, Tao Y, et al. Progress in Organic Coatings, 2021, 158, 106360.
63 Li J, Zhang Y, Ma K, et al. Journal of Thermal Spray Technology, 2018, 27(3), 471.
64 Zhao G Y, Zhi X, Chang H L. Journal of Functional Materials, 2007(6), 1034 (in Chinese).
赵高扬, 郅晓, 常慧丽. 功能材料, 2007(6), 1034.
65 Sett S, Yan X, Barac G, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36400.
66 Wang L, McCarthy T J. Angewandte Chemie International Edition in English, 2016, 55(1), 244.
67 Yang Y. Preparation and performance research of superhydrophobic coa-tings fabricated on aluminum alloys with dipping method. Master's Thesis, South China University of Technology, China, 2021 (in Chinese).
杨阳. 铝合金高疏水涂层浸涂法制备及其性能研究. 硕士学位论文, 华南理工大学, 2021.
68 Zhu Z P, Qin Y Q. Acta Physica Sinica, 2013, 62(15), 7 (in Chinese).
朱兆平, 秦亦强. 物理学报, 2013, 62(15), 7.
69 Liu Y W, Du J L, Wu Z P, et al. Acta Energiae Solaris Sinica, 2021, 42(11), 1 (in Chinese).
刘勇武, 杜俊霖, 吴卓鹏, 等. 太阳能学报, 2021, 42(11), 1.
70 Lin C Y, Lin K A, Yang T W, et al. Journal of Colloid and Interface Science, 2017, 490, 174.
71 Hwan K D, Hwa K D, Jun T H, et al. Applied Surface Science, 2022, 590, 153083.
72 Zou X, Tao C, Yang K, et al. Applied Surface Science, 2018, 440, 700.
73 Taylor R W, Sandoghdar V. Nano Letters, 2019, 19(8), 4827.
74 Askar K, Phillips B M, Fang Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 84.
75 Wang L, Hu X M. Acta Physica Sinica, 2004(8), 2544 (in Chinese).
王丽, 胡响明. 物理学报, 2004(8), 2544.
76 Zhang Y W, Xu L, Wan S. Acta Photonica Sinica, 2013, 42(5), 596 (in Chinese).
张译文, 徐林, 万松. 光子学报, 2013, 42(5), 596.
77 Fahrenbruch A L, Bube R H, ed. Fundamentals of solar cells, Fundamentals of Solar Cells, USA, 1983, pp.541.
78 Abderrezek M, Fathi M. Solar Energy, 2017, 142, 308.
79 Park J Y. Science, 2018, 361(6404), 753.
80 Chen H, Zhang P, Zhang L, et al. Nature, 2016, 532(7597), 85.
81 Bhaduri S, Alath A, Mallick S, et al. IEEE Journal of Photovoltaics, 2020, 10(1), 166.
82 Gong X, He S. ACS Omega, 2020, 5(8), 4100.
83 Torun I, Celik N, Hancer M, et al. Macromolecules, 2018, 51(23), 10011.
84 Wang P, Chen M, Han H, et al. Journal of Materials Chemistry A, 2016, 4(20), 7869.
85 Chen S, Song Y, Xu F. ACS Sustainable Chemistry & Engineering, 2018, 6(4), 5173.
86 Kim S, Hwang H J, Cho H, et al. Chemical Engineering Journal, 2018, 350, 225.
87 Park Y B, Im H, Im M, et al. Journal of Materials Chemistry, 2011, 21(3), 633.
88 Liang Z, Zhou Z, Zhao L, et al. New Journal of Chemistry, 2020, 44(34), 14481.
89 Liu Y, Das A, Xu S, et al. Advanced Energy Materials, 2012, 2(1), 47.
90 Ma R, Jiang Q. Chemical Industry and Engineering Progress, 2019, 38(9), 4119 (in Chinese).
马瑞, 江琦. 化工进展, 2019, 38(9), 4119.
91 Zhou H X, He J Y. Sci-tech Finance Monthly, 2023(Z1), 63 (in Chinese).
周会霞, 何静怡. 科技与金融, 2023(Z1), 63.
[1] 位振, 戴飞, 何强. 多级结构超疏水表面的制备与性能分析[J]. 材料导报, 2024, 38(9): 22100133-5.
[2] 曲作鹏, 刘吉臻, 田欣利, 魏啸天, 汪瑞军, 王永田, 王海军. 高参数垃圾电站锅炉防腐涂层体系的设计策略与评价[J]. 材料导报, 2024, 38(8): 22110142-6.
[3] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[4] 赵清平, 亢淑梅, 邹方正, 朱忠博, 李鹏宇. 甘油微胶囊搭载硅烷环氧共混涂层的耐蚀性研究[J]. 材料导报, 2024, 38(7): 22080166-6.
[5] 卜锦超, 唐中华, 徐凯, 何财兵, 王敏嘉. 釉质防护涂层的湿化学法制备及劣化性能[J]. 材料导报, 2024, 38(4): 22030305-5.
[6] 黄勇, 李俊越, 张栋葛, 韩津春, 郁崇文, 俞建勇, 丁彬, 李召岭. 化纤织物疏水疏油功能整理的发展概况[J]. 材料导报, 2024, 38(4): 22090167-14.
[7] 楚佳杰, 韩冰源, 李仁兴, 高祥涵, 丛孟启, 吴海东, 徐文文, 杜伟. 基于响应曲面法的等离子喷涂Ni60CuMo涂层质量优化[J]. 材料导报, 2024, 38(3): 22040338-6.
[8] 朱飞, 杨雪, 苏静, 王鸿博. 酶促咖啡酸制备超疏水棉织物及其油水分离应用[J]. 材料导报, 2024, 38(3): 22100129-7.
[9] 王彦, 杨凯, 吕绪明, 党博, 魏东博, 张平则. 石墨表面双辉等离子Ta/TaC涂层抗热震性能研究[J]. 材料导报, 2024, 38(23): 23080013-9.
[10] 袁璐, 许旻, 李毅, 王虎, 高恒蛟, 高文生, 李中华, 何延春. 聚酰亚胺材料的抗原子氧防护技术研究进展[J]. 材料导报, 2024, 38(23): 23080220-10.
[11] 付浩, 彭振驯, 廖业宏, 薛佳祥, 沈朝, 周张健. 基于事故容错燃料的高燃耗组件研究进展[J]. 材料导报, 2024, 38(22): 23090025-12.
[12] 何东青, 冯子涵, 郑文文, 李文生, 尚伦霖. Cr3C2-NiCr/AlCrN复合涂层高温摩擦学行为研究[J]. 材料导报, 2024, 38(21): 23060112-7.
[13] 钟镇涛, 洪森, 邓妍, 何泽乾, 戴翠英, 毛卫国, 张有为, 刘平桂. 热处理对FeSi合金粉末/有机硅树脂吸波涂层微观结构和力学性能的影响[J]. 材料导报, 2024, 38(20): 23050106-7.
[14] 舒林森, 张粲东, 于鹤龙, 张朝铭. 激光熔覆原位Ti-C-B-Al复合涂层的结构特征与力学性能[J]. 材料导报, 2024, 38(2): 22080162-5.
[15] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed