Research Progress on Superhydrophobic Self-cleaning Coatings for Photovoltaic Applications
LI Chenggang1,2, WU Shilian1,2, CHANG Guohua1,2, GUAN Runze1,2, ZHOU Binjian1,2, YANG Tong1,2, YANG Yu1,2,*
1 Yunnan International Joint Research Center for Photoelectric Information Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China 2 International Joint Research Center for Optoelectronic and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650504, China
Abstract: Self-cleaning coatings, especially transparent superhydrophobic self-cleaning coating, have lots of advantages such as easy preparation, low cost, and excellent self-cleaning ability etc, which have significant application value in the degradation of photovoltaic devices caused by surface contamination in the course of long-term use. In this paper, the research progress of superhydrophobic self-cleaning coatings for photovoltaic applications is reviewed, mainly on the perspectives of preparation, structural compositions, performance characteristics, and application examples. The development direction and application prospect of superhydrophobic self-cleaning coatings for photovoltaic applications are introduced. It may provides some reference for the R&D and industrial production applications of superhydrophobic self-cleaning coatings of photovoltaic applications.
1 Mani M, Pillai R. Renewable and Sustainable Energy Reviews, 2010, 14(9), 3124. 2 Adak D, Ghosh S, Chakrabarty P, et al. Solar Energy, 2017, 155, 410. 3 Zhao B, Zhang S, Cao S, et al. Clean Technologies and Environmental Policy, 2019, 21(8), 1645. 4 Li H J, Fan W Z, Pan H H, et al. Chemical Physics Letters, 2017, 667, 20. 5 Karthik D, Pendse S, Sakthivel S, et al. Solar Energy Materials and Solar Cells, 2017, 159, 204. 6 Huang Q S, Xu L J. New Chemical Materials, 2020, 48(5), 219 (in Chinese). 黄启舒, 许里杰. 化工新型材料, 2020, 48(5), 219. 7 Hooda A, Goyat M S, Pandey J K, et al. Progress in Organic Coatings, 2020, 142, 10557. 8 Zheng Z R, Sun X T, Gu B F, et al. Acta Optica Sinica, 2006(10), 1483 (in Chinese). 郑臻荣, 孙旭涛, 顾培夫, 等. 光学学报, 2006(10), 1483. 9 Young T. Philosophical Transactions of the Royal Society of London, 1805, 95, 65. 10 Wenzel R N. Industrial & Engineering Chemistry, 2002, 28(8), 988. 11 Cassie A B D, Baxter S. Transactions of the Faraday Society, 1944, 40, 546. 12 Barthlott W, Neinhuis C. Planta, 1997, 202(1), 1. 13 Bico J, Thiele U, Quéré D. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 206(1), 41. 14 Abraham M. Langmuir: the ACS journal of surfaces and colloids, 2004, 20(9), 3517. 15 Lafuma A, Quere D. Nature Materials, 2003, 2(7), 457. 16 Jiang L. Science & Technology Review, 2005(2), 4 (in Chinese). 江雷. 科技导报, 2005(2), 4. 17 Furmidge C G L. Journal of Colloid Science, 1962, 17(4), 309. 18 Chen W, Fadeev A Y, Hsieh M C, et al. Langmuir, 1999, 15(10), 3395. 19 Mahadik S A, Parale V, Vhatkara R S, et al. Applied Surface Science, 2013, 277, 67. 20 Wu Y, Zhou Z, Tuo Y, et al. Materials Chemistry and Physics, 2015, 149-150, 522. 21 Isakov K, Kauppinen C, Franssila S, et al. ACS Applied Materials & Interfaces, 2020, 12(44), 49957. 22 Li G, Chen T, Yan B, et al. Applied Physics Letters, 2008, 92(17), 173104. 23 Sriram S, Kumar A. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 563, 271. 24 Ren T, He J. ACS Applied Materials & Interfaces, 2017, 9(39), 34367. 25 Xu Q F, Wang J N, Sanderson K D. ACS Nano, 2010, 4(4), 2201. 26 Bake A, Merah N, Matin A, et al. Progress in Organic Coatings, 2018, 122, 170. 27 Li X, Li B, Li Y, et al. Chemical Engineering Journal, 2021, 404, 126504. 28 Lu Z, Xu L, He Y, et al. Thin Solid Films, 2019, 692, 137560. 29 Wu Y, Tan X, Wang Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 634, 127919. 30 Hooda A, Goyat M S, Kumar A, et al. Materials Letters, 2018, 233, 340. 31 Xue C H, Wu Y, Guo X J, et al. Cellulose, 2020, 27(6), 3455. 32 Gurav A B, Shi H, Duan M, et al. Chemical Engineering Journal, 2021, 416, 127809. 33 Wang D, Sun Q, Hokkanen M J, et al. Nature, 2020, 582(7810), 55. 34 Oehler G C, Lisco F, Bukhari F, et al. Energies, 2020, 13(2), 299. 35 Kim J K, Mai Y W. Materials science and technology, American Cancer Society, USA, 2006, pp.241. 36 Zhu Y, Shen C, Li J, et al. Materials Chemistry and Physics, 2021, 257, 123828. 37 Wang L F, Zhao Y, Jiang L, et al. Chemical Journal of Chinese Universities, 2009, 30(4), 731 (in Chinese). 王丽芳, 赵勇, 江雷, 等. 高等学校化学学报, 2009, 30(4), 731. 38 Burkarter E, Saul C K, Thomazi F, et al. Surface and Coatings Techno-logy, 2007, 202(1), 194. 39 Bao Y, Tang P, Shi X, et al. The Journal of Adhesion, 2021, 98(12), 1801. 40 Kosak S C, Yilgör E, Yilgör I. Polymer, 2015, 62, 118. 41 Wu X, Wyman I, Zhang G, et al. Progress in Organic Coatings, 2016, 90, 463. 42 Ko K, Yoon D, Yang S C, et al. Journal of Industrial and Engineering Chemistry, 2022, 106, 460. 43 Wang Z, Yang A, Tan X, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 601, 124998. 44 Peng C, Chen Z, Tiwari M K. Nature Materials, 2018, 17(4), 355. 45 Ren L F, Xia F, Shao J, et al. Desalination, 2017, 404, 155. 46 Liu H, Huang J, Chen Z, et al. Chemical Engineering Journal, 2017, 330, 26. 47 Rin Y C, Shanmugasundaram A, Lee D W. Applied Surface Science, 2022, 583, 152500. 48 Zhang C, Kalulu M, Sun S, et al. Colloids and Surfaces A: Physicoche-mical and Engineering Aspects, 2019, 570, 147. 49 Zhi J, Zhang L Z. Applied Surface Science, 2018, 454, 239. 50 Li W, Liu K, Zhang Y, et al. Chemical Engineering Journal, 2022, 446, 137195. 51 Liu J, Sun Y, Zhou X, et al. Advanced Materials, 2021, 33(23), 2100237. 52 Chu D, Yao P, Huang C. Optics and Laser Technology, 2021, 136, 106790. 53 Ke C, Zhang C, Wu X, et al. Thin Solid Films, 2021, 723(1), 138583. 54 Liu R, Sun T, Liu J, et al. Nanotechnology, 2016, 27(25), 254006. 55 Pei M, Huo L, Zhang K, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 585, 123984. 56 Ma J, Ai Y, Kang L, et al. Nanoscale Research Letters, 2018, 13(1), 332. 57 Lee S Y, Rahmawan Y, Yang S. ACS Applied Materials & Interfaces, 2015, 7(43), 24197. 58 Lyu J, Wu B, Wu N, et al. Chemical Engineering Journal, 2021, 404, 126456. 59 Siri R, Thongrom S, Van D P, et al. Thin Solid Films, 2019, 686, 137429. 60 Gong B, Ma L, Guan Q, et al. Journal of Environmental Chemical Engineering, 2022, 10(3), 107884. 61 Zhao Y, Xu T, Hu J M. Chemical Engineering Journal, 2022, 450, 136557. 62 Sun H, Xi Y, Tao Y, et al. Progress in Organic Coatings, 2021, 158, 106360. 63 Li J, Zhang Y, Ma K, et al. Journal of Thermal Spray Technology, 2018, 27(3), 471. 64 Zhao G Y, Zhi X, Chang H L. Journal of Functional Materials, 2007(6), 1034 (in Chinese). 赵高扬, 郅晓, 常慧丽. 功能材料, 2007(6), 1034. 65 Sett S, Yan X, Barac G, et al. ACS Applied Materials & Interfaces, 2017, 9(41), 36400. 66 Wang L, McCarthy T J. Angewandte Chemie International Edition in English, 2016, 55(1), 244. 67 Yang Y. Preparation and performance research of superhydrophobic coa-tings fabricated on aluminum alloys with dipping method. Master's Thesis, South China University of Technology, China, 2021 (in Chinese). 杨阳. 铝合金高疏水涂层浸涂法制备及其性能研究. 硕士学位论文, 华南理工大学, 2021. 68 Zhu Z P, Qin Y Q. Acta Physica Sinica, 2013, 62(15), 7 (in Chinese). 朱兆平, 秦亦强. 物理学报, 2013, 62(15), 7. 69 Liu Y W, Du J L, Wu Z P, et al. Acta Energiae Solaris Sinica, 2021, 42(11), 1 (in Chinese). 刘勇武, 杜俊霖, 吴卓鹏, 等. 太阳能学报, 2021, 42(11), 1. 70 Lin C Y, Lin K A, Yang T W, et al. Journal of Colloid and Interface Science, 2017, 490, 174. 71 Hwan K D, Hwa K D, Jun T H, et al. Applied Surface Science, 2022, 590, 153083. 72 Zou X, Tao C, Yang K, et al. Applied Surface Science, 2018, 440, 700. 73 Taylor R W, Sandoghdar V. Nano Letters, 2019, 19(8), 4827. 74 Askar K, Phillips B M, Fang Y, et al. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 439, 84. 75 Wang L, Hu X M. Acta Physica Sinica, 2004(8), 2544 (in Chinese). 王丽, 胡响明. 物理学报, 2004(8), 2544. 76 Zhang Y W, Xu L, Wan S. Acta Photonica Sinica, 2013, 42(5), 596 (in Chinese). 张译文, 徐林, 万松. 光子学报, 2013, 42(5), 596. 77 Fahrenbruch A L, Bube R H, ed. Fundamentals of solar cells, Fundamentals of Solar Cells, USA, 1983, pp.541. 78 Abderrezek M, Fathi M. Solar Energy, 2017, 142, 308. 79 Park J Y. Science, 2018, 361(6404), 753. 80 Chen H, Zhang P, Zhang L, et al. Nature, 2016, 532(7597), 85. 81 Bhaduri S, Alath A, Mallick S, et al. IEEE Journal of Photovoltaics, 2020, 10(1), 166. 82 Gong X, He S. ACS Omega, 2020, 5(8), 4100. 83 Torun I, Celik N, Hancer M, et al. Macromolecules, 2018, 51(23), 10011. 84 Wang P, Chen M, Han H, et al. Journal of Materials Chemistry A, 2016, 4(20), 7869. 85 Chen S, Song Y, Xu F. ACS Sustainable Chemistry & Engineering, 2018, 6(4), 5173. 86 Kim S, Hwang H J, Cho H, et al. Chemical Engineering Journal, 2018, 350, 225. 87 Park Y B, Im H, Im M, et al. Journal of Materials Chemistry, 2011, 21(3), 633. 88 Liang Z, Zhou Z, Zhao L, et al. New Journal of Chemistry, 2020, 44(34), 14481. 89 Liu Y, Das A, Xu S, et al. Advanced Energy Materials, 2012, 2(1), 47. 90 Ma R, Jiang Q. Chemical Industry and Engineering Progress, 2019, 38(9), 4119 (in Chinese). 马瑞, 江琦. 化工进展, 2019, 38(9), 4119. 91 Zhou H X, He J Y. Sci-tech Finance Monthly, 2023(Z1), 63 (in Chinese). 周会霞, 何静怡. 科技与金融, 2023(Z1), 63.