Please wait a minute...
材料导报  2024, Vol. 38 Issue (9): 22100064-8    https://doi.org/10.11896/cldb.22100064
  金属与金属基复合材料 |
金属增材制造质量控制及复合制造技术研究现状
刘倩1,2,3, 卢秉恒2,3,*
1 华北理工大学冶金与能源学院,河北 唐山 063210
2 西安交通大学机械工程学院,西安 710049
3 国家增材制造创新中心,西安 710117
Review on Quality Control and Relevant Hybrid Technology in Additive Manufacturing of Metallic Materials
LIU Qian1,2,3, LU Bingheng2,3,*
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Heibei, China
2 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
3 National Innovation Institute of Additive Manufacturing, Xi'an 710117, China
下载:  全 文 ( PDF ) ( 8292KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 相比传统制造工艺,增材制造能够实现复杂结构金属部件的近净成形。然而,增材制造具有冷却速度快、热梯度大、非平衡凝固与往复热循环历史等特点,容易存在孔洞、残余拉应力、各向异性等缺陷,极大限制增材制造的进一步应用。复合增材制造技术是将传统制造方法与增材制造有机结合,充分发挥传统制造工艺在性能调控与尺寸精度等方面的优势,抑制单纯增材制造引起的各类缺陷,获得高质量、无缺陷的增材制造部件。本文首先揭示增材制造工艺缺陷的形成机理,明确工艺参数优化方法在缺陷改善方面的局限性,进而阐明复合增材制造的内涵,综述近年来增材制造与轧制、激光冲击强化、热等静压、热处理等复合制造技术的研究现状与工艺原理,探讨复合增材制造技术对不同缺陷的适用性,并对增材制造未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘倩
卢秉恒
关键词:  复合增材制造  塑性变形  激光冲击  各向异性  残余应力    
Abstract: Compared with conventional manufacturing processes, additive manufacturing is a technique used to produce near-net-shape and complex metal components. However, owing to the high cooling rates, high temperature gradients, non-equilibrium solidification, and multiple transient thermal cycles, defects such as porosities, residual tensile stress, and anisotropy are created during additive manufacturing, significantly restricting further applications. Hybrid additive manufacturing technology, which combines the conventional manufacturing method with additive manufacturing, exploits the conventional manufacturing method in terms of its performance control and dimensional accuracy. Therefore, defects created during metal additive manufacturing are eliminated, and defect-free additive manufactured components with high qualities are produced. With this background, this paper first reveals the formation mechanism of defects in the additive manufacturing process, and we discover that merely using the process parameter optimization method is inadequate to improve mechanical properties. The definition and classification of hybrid additive manufacturing are then discussed. The current research status and technical principles of hybrid manufacturing processes (i.e., rolling, laser shock peening, hot isostatic pressing, and heat treatment) are analyzed. Moreover, the application range of various hybrid additive manufacturing technologies is discussed. Finally, the future development trend of the additive manufacturing process is predicted.
Key words:  hybrid additive manufacturing    plastic deformation    laser shock peening    anisotropic    residual stress
出版日期:  2024-05-10      发布日期:  2024-05-13
ZTFLH:  TG44  
基金资助: 河北省自然科学基金(E2022209114;E2018209278);唐山市市级科技计划项目(22130217H)
通讯作者:  * 卢秉恒,中国工程院院士,西安交通大学机械工程学院教授、博士研究生导师。1986年毕业于西安交通大学,获博士学位。目前主要从事金属增材制造、微纳制造、生物制造、高速切削机床等方面的研究工作,发表学术论文300余篇。bhlu@mail.xjtu.edu.cn   
作者简介:  刘倩,2016年6月获得工学博士学位。现在西安交通大学机械工程学院卢秉恒院士的指导下进行博士后研究。目前主要研究领域为金属增材制造。
引用本文:    
刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
LIU Qian, LU Bingheng. Review on Quality Control and Relevant Hybrid Technology in Additive Manufacturing of Metallic Materials. Materials Reports, 2024, 38(9): 22100064-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.22100064  或          http://www.mater-rep.com/CN/Y2024/V38/I9/22100064
1 Gu D, Shi X, Poprawe R, et al. Science, 2021, 372(6545), 1487.
2 Lu B H, Li D C, Tian X Y. Engineering, 2015, 1(1), 85.
3 Wang H M. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2690 (in Chinese).
王华明.航空学报, 2014, 35(10), 2690.
4 Plessis A, Yadroitsava I, Yadroitsev I. Materials & Design, 2020, 187, 108385.
5 Michael P S, Gurucharan M, Robert E W, et al. Journal of Manufactu-ring Science and Engineering, 2018, 140(6), 060801.
6 Webster S, Lin H, Carter Iii F M, et al. Journal of Materials Processing Technology, 2021, 291, 117048.
7 Damon J, Dietrich S, Vollert F, et al. Additive Manufacturing, 2018, 20, 77.
8 Sola A, Nouri A. Journal of Advanced Manufacturing and Processing, 2019, 1(3), 10021.
9 Zhao C, Parab N D, Li X, et al. Science, 2020, 370(6520), 1080.
10 Kumar P, Ramamurty U. Acta Materialia, 2020, 194, 305.
11 Yakout M, Cadamuro A, Elbestawi M A, et al. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8), 2081.
12 Fu R, Tang S, Lu J, et al. Materials & Design, 2021, 199, 109370.
13 Ayarkwa K F, Williams S, Ding J. International Journal of Rapid Manufacturing, 2015, 5(1), 44.
14 Ryan E M, Sabin T J, Watts J F, et al. Journal of Materials Processing Technology, 2018, 262, 577.
15 Cong B, Ding J, Williams S. The International Journal of Advanced Ma-nufacturing Technology, 2015, 76(9-12), 1593.
16 Hauser T, Reisch R T, Breese P P, et al. Additive Manufacturing, 2021, 41, 101993.
17 Szost B A, Terzi S, Martina F, et al. Materials & Design, 2016, 89, 559.
18 Zhao X, Lin X, Chen J, et al. Materials Science and Engineering: A, 2009, 504(1-2), 129.
19 Wu Q, Mukherjee T, De A, et al. Additive Manufacturing, 2020, 35, 101355.
20 Xiong J, Lei Y, Li R. Applied Thermal Engineering, 2017, 126, 43.
21 Li R, Wang G, Zhao X, et al. Additive Manufacturing, 2021, 46, 102203.
22 Abusalma H, Eisazadeh H, Hejripour F, et al. Journal of Manufacturing Processes, 2022, 75, 863.
23 Becker T H, Kumar P, Ramamurty U. Acta Materialia, 2021, 219, 117240.
24 Hadjipantelis N, Weber B, Buchanan C, et al. Thin-Walled Structures, 2022, 171, 108634.
25 Bai J Y, Yang C L, Lin S B, et al. The International Journal of Advanced Manufacturing Technology, 2016, 86(1-4), 479.
26 Sun L, Jiang F, Huang R, et al. Materials Science and Engineering: A, 2020, 787, 139514.
27 Cheepu M, Lee C I, Cho S M. Transactions of the Indian Institute of Me-tals, 2020, 73(6), 1475.
28 Ding D, Wu B, Pan Z, et al. Materials and Manufacturing Processes, 2020, 35(7), 845.
29 Lu T, Cui Y, Xue L, et al. Journal of Materials Science, 2021, 56(21), 12438.
30 Meiners F, Ihne J, Jürgens P, et al. Procedia Manufacturing, 2020, 47, 261.
31 Colegrove P A, Donoghue J, Martina F, et al. Scripta Materialia, 2017, 135, 111.
32 Zhang H O, Wang R, Liang L, et al. Rapid Prototyping Journal, 2016, 22(6), 857.
33 Tian X, Zhu Y, Lim C V S, et al. Additive Manufacturing, 2021, 46, 102151.
34 Xie Y, Zhang H, Zhou F. Journal of Manufacturing Science and Engineering, 2016, 138(11), 111002.
35 Gu J, Ding J, Williams S W, et al. Journal of Materials Processing Technology, 2016, 230, 26.
36 Zhang C, Dong Y, Ye C. Advanced Engineering Materials, 2021, 23(7), 2001216.
37 Hackel L, Rankin J R, Rubenchik A, et al. Additive Manufacturing, 2018, 24, 67.
38 Sun R, Li L, Guo W, et al. Materials Science and Engineering: A, 2018, 737, 94.
39 Kalentics N, de Seijas M O V, Griffiths S, et al. Additive Manufacturing, 2020, 33, 101112.
40 Zhou J, Sun Y, Huang S, et al. Optics & Laser Technology, 2019, 109, 263.
41 Tong Z, Ren X, Ren Y, et al. Surface and Coatings Technology, 2018, 335, 32.
42 Sun R, Li L, Zhu Y, et al. Journal of Alloys and Compounds, 2018, 747, 255.
43 Lu J, Lu H, Xu X, et al. International Journal of Machine Tools and Manufacture, 2020, 148, 103475.
44 Cunningham R, Nicolas A, Madsen J, et al. Materials Research Letters, 2017, 5(7), 516.
45 Shui X, Yamanaka K, Mori M, et al. Materials Science and Engineering: A, 2017, 680, 239.
46 du Plessis A, Macdonald E. Additive Manufacturing, 2020, 34, 101191.
47 Leuders S, Lieneke T, Lammers S, et al. Journal of Materials Research, 2014, 29(17), 1911.
48 Herzog D, Bartsch K, Bossen B. Additive Manufacturing, 2020, 36, 101494.
49 Fang X, Zhang L, Chen G, et al. Materials Science and Engineering: A. 2021, 800, 140168.
50 Li F, Chen S, Shi J, et al. Applied Sciences, 2017, 7(12), 1233.
51 Duarte V R, Rodrigues T A, Schell N, et al. Additive Manufacturing, 2020, 35, 101193.
52 Maamoun A H, Veldhuis S C, Elbestawi M. Journal of Materials Proces-sing Technology, 2019, 263, 308.
53 Santos Macías J G, Elangeswaran C, Zhao L, et al. Scripta Materialia, 2019, 170, 124.
54 Zhou J, Han X, Li H, et al. Materials & Design, 2021, 210, 110092.
55 Du D, Haley J C, Dong A, et al. Materials & Design, 2019, 181, 107923.
56 Cheng T, Zhang Z Y, Liu Y B, et al. Chinese Journal of Lasers, 2022, 49(8), 184 (in Chinese).
程坦, 张振雨, 刘演冰, 等. 中国激光, 2022, 49(8), 184.
57 Zhuo L, Wang Z, Zhang H, et al. Materials Letters, 2019, 234, 196.
58 Brandl E, Heckenberger U, Holzinger V, et al. Materials & Design, 2012, 34, 159.
59 Gu J, Ding J, Williams S W, et al. Materials Science and Engineering: A, 2016, 651, 18.
60 Vahedi N A, Ghaffari M, Nasiri A. Materials, 2020, 13(12), 2795.
61 Takata N, Kodaira H, Sekizawa K, et al. Materials Science and Enginee-ring: A, 2017, 704, 218.
[1] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[2] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[3] 林忠亮, 白清顺, 唐伟, 吴保全, 刘烨欣, 兰洋. 压合衬套冷挤压强化的残余应力的数值模拟[J]. 材料导报, 2024, 38(3): 22070260-8.
[4] 俞彦飞, 王暄, 高鑫, 宁锋, 张浩鹏, 岳红彦. 基于定向冷冻技术构建的多孔材料及其应用[J]. 材料导报, 2023, 37(5): 21050074-11.
[5] 邓云飞, 胡昂, 任光辉, 魏刚. 7050-T7351铝合金力学性能测试及本构模型研究[J]. 材料导报, 2023, 37(3): 21060149-7.
[6] 张子瑜, 刘艳芳, 李玉胜, 曹阳. 高压扭转变形诱导的非均匀微观结构演化[J]. 材料导报, 2023, 37(23): 22050212-10.
[7] 耿汝伟, 程延海, 杜军, 魏正英. 2319铝合金电弧增材制造温度场与应力演变研究[J]. 材料导报, 2023, 37(23): 22060214-8.
[8] 屈盛官, 翟荐硕, 段晨风, 孙朋飞, 李小强. TC4钛合金二维超声振动车削性能研究[J]. 材料导报, 2023, 37(22): 22040390-9.
[9] 郭政伟, 龙伟民, 王博, 祁婷, 李宁波. 焊接残余应力调控技术的研究与应用进展[J]. 材料导报, 2023, 37(2): 20090331-7.
[10] 蔡兴瑞, 万逸飞, 李翰超, 宋嘉玲, 冯志强, 曾庆丰, 关康, 刘建涛. 连续碳化硅纤维增韧陶瓷基复合材料微结构数字化建模和宏观各向异性模量预测[J]. 材料导报, 2023, 37(13): 21050041-7.
[11] 金玉花, 邢逸初, 周子正, 吴博. 喷丸改性对7050铝合金FSW接头性能的影响[J]. 材料导报, 2023, 37(10): 21070253-5.
[12] 李胜男, 路全彬, 都东, 孙华为, 周许升, 龙伟民. C/C复合材料钎焊接头应力场的有限元分析[J]. 材料导报, 2023, 37(1): 21120062-5.
[13] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响[J]. 材料导报, 2022, 36(Z1): 22030197-6.
[14] 周港明, 杭美艳, 路兰, 王浩, 蒋明辉. 风积沙3D打印砂浆材料参数与各向异性研究[J]. 材料导报, 2022, 36(9): 21020081-5.
[15] 周杰明, 黎建明, 李冬旭, 赵永田, 杨海, 魏乃光. 降低m-CVDZnS多晶残余应力的带压退火研究[J]. 材料导报, 2022, 36(8): 20110116-7.
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed