Review on Quality Control and Relevant Hybrid Technology in Additive Manufacturing of Metallic Materials
LIU Qian1,2,3, LU Bingheng2,3,*
1 College of Metallurgy and Energy, North China University of Science and Technology, Tangshan 063210, Heibei, China 2 School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China 3 National Innovation Institute of Additive Manufacturing, Xi'an 710117, China
Abstract: Compared with conventional manufacturing processes, additive manufacturing is a technique used to produce near-net-shape and complex metal components. However, owing to the high cooling rates, high temperature gradients, non-equilibrium solidification, and multiple transient thermal cycles, defects such as porosities, residual tensile stress, and anisotropy are created during additive manufacturing, significantly restricting further applications. Hybrid additive manufacturing technology, which combines the conventional manufacturing method with additive manufacturing, exploits the conventional manufacturing method in terms of its performance control and dimensional accuracy. Therefore, defects created during metal additive manufacturing are eliminated, and defect-free additive manufactured components with high qualities are produced. With this background, this paper first reveals the formation mechanism of defects in the additive manufacturing process, and we discover that merely using the process parameter optimization method is inadequate to improve mechanical properties. The definition and classification of hybrid additive manufacturing are then discussed. The current research status and technical principles of hybrid manufacturing processes (i.e., rolling, laser shock peening, hot isostatic pressing, and heat treatment) are analyzed. Moreover, the application range of various hybrid additive manufacturing technologies is discussed. Finally, the future development trend of the additive manufacturing process is predicted.
刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
LIU Qian, LU Bingheng. Review on Quality Control and Relevant Hybrid Technology in Additive Manufacturing of Metallic Materials. Materials Reports, 2024, 38(9): 22100064-8.
1 Gu D, Shi X, Poprawe R, et al. Science, 2021, 372(6545), 1487. 2 Lu B H, Li D C, Tian X Y. Engineering, 2015, 1(1), 85. 3 Wang H M. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2690 (in Chinese). 王华明.航空学报, 2014, 35(10), 2690. 4 Plessis A, Yadroitsava I, Yadroitsev I. Materials & Design, 2020, 187, 108385. 5 Michael P S, Gurucharan M, Robert E W, et al. Journal of Manufactu-ring Science and Engineering, 2018, 140(6), 060801. 6 Webster S, Lin H, Carter Iii F M, et al. Journal of Materials Processing Technology, 2021, 291, 117048. 7 Damon J, Dietrich S, Vollert F, et al. Additive Manufacturing, 2018, 20, 77. 8 Sola A, Nouri A. Journal of Advanced Manufacturing and Processing, 2019, 1(3), 10021. 9 Zhao C, Parab N D, Li X, et al. Science, 2020, 370(6520), 1080. 10 Kumar P, Ramamurty U. Acta Materialia, 2020, 194, 305. 11 Yakout M, Cadamuro A, Elbestawi M A, et al. The International Journal of Advanced Manufacturing Technology, 2017, 92(5-8), 2081. 12 Fu R, Tang S, Lu J, et al. Materials & Design, 2021, 199, 109370. 13 Ayarkwa K F, Williams S, Ding J. International Journal of Rapid Manufacturing, 2015, 5(1), 44. 14 Ryan E M, Sabin T J, Watts J F, et al. Journal of Materials Processing Technology, 2018, 262, 577. 15 Cong B, Ding J, Williams S. The International Journal of Advanced Ma-nufacturing Technology, 2015, 76(9-12), 1593. 16 Hauser T, Reisch R T, Breese P P, et al. Additive Manufacturing, 2021, 41, 101993. 17 Szost B A, Terzi S, Martina F, et al. Materials & Design, 2016, 89, 559. 18 Zhao X, Lin X, Chen J, et al. Materials Science and Engineering: A, 2009, 504(1-2), 129. 19 Wu Q, Mukherjee T, De A, et al. Additive Manufacturing, 2020, 35, 101355. 20 Xiong J, Lei Y, Li R. Applied Thermal Engineering, 2017, 126, 43. 21 Li R, Wang G, Zhao X, et al. Additive Manufacturing, 2021, 46, 102203. 22 Abusalma H, Eisazadeh H, Hejripour F, et al. Journal of Manufacturing Processes, 2022, 75, 863. 23 Becker T H, Kumar P, Ramamurty U. Acta Materialia, 2021, 219, 117240. 24 Hadjipantelis N, Weber B, Buchanan C, et al. Thin-Walled Structures, 2022, 171, 108634. 25 Bai J Y, Yang C L, Lin S B, et al. The International Journal of Advanced Manufacturing Technology, 2016, 86(1-4), 479. 26 Sun L, Jiang F, Huang R, et al. Materials Science and Engineering: A, 2020, 787, 139514. 27 Cheepu M, Lee C I, Cho S M. Transactions of the Indian Institute of Me-tals, 2020, 73(6), 1475. 28 Ding D, Wu B, Pan Z, et al. Materials and Manufacturing Processes, 2020, 35(7), 845. 29 Lu T, Cui Y, Xue L, et al. Journal of Materials Science, 2021, 56(21), 12438. 30 Meiners F, Ihne J, Jürgens P, et al. Procedia Manufacturing, 2020, 47, 261. 31 Colegrove P A, Donoghue J, Martina F, et al. Scripta Materialia, 2017, 135, 111. 32 Zhang H O, Wang R, Liang L, et al. Rapid Prototyping Journal, 2016, 22(6), 857. 33 Tian X, Zhu Y, Lim C V S, et al. Additive Manufacturing, 2021, 46, 102151. 34 Xie Y, Zhang H, Zhou F. Journal of Manufacturing Science and Engineering, 2016, 138(11), 111002. 35 Gu J, Ding J, Williams S W, et al. Journal of Materials Processing Technology, 2016, 230, 26. 36 Zhang C, Dong Y, Ye C. Advanced Engineering Materials, 2021, 23(7), 2001216. 37 Hackel L, Rankin J R, Rubenchik A, et al. Additive Manufacturing, 2018, 24, 67. 38 Sun R, Li L, Guo W, et al. Materials Science and Engineering: A, 2018, 737, 94. 39 Kalentics N, de Seijas M O V, Griffiths S, et al. Additive Manufacturing, 2020, 33, 101112. 40 Zhou J, Sun Y, Huang S, et al. Optics & Laser Technology, 2019, 109, 263. 41 Tong Z, Ren X, Ren Y, et al. Surface and Coatings Technology, 2018, 335, 32. 42 Sun R, Li L, Zhu Y, et al. Journal of Alloys and Compounds, 2018, 747, 255. 43 Lu J, Lu H, Xu X, et al. International Journal of Machine Tools and Manufacture, 2020, 148, 103475. 44 Cunningham R, Nicolas A, Madsen J, et al. Materials Research Letters, 2017, 5(7), 516. 45 Shui X, Yamanaka K, Mori M, et al. Materials Science and Engineering: A, 2017, 680, 239. 46 du Plessis A, Macdonald E. Additive Manufacturing, 2020, 34, 101191. 47 Leuders S, Lieneke T, Lammers S, et al. Journal of Materials Research, 2014, 29(17), 1911. 48 Herzog D, Bartsch K, Bossen B. AdditiveManufacturing, 2020, 36, 101494. 49 Fang X, Zhang L, Chen G, et al. Materials Science and Engineering: A. 2021, 800, 140168. 50 Li F, Chen S, Shi J, et al. Applied Sciences, 2017, 7(12), 1233. 51 Duarte V R, Rodrigues T A, Schell N, et al. Additive Manufacturing, 2020, 35, 101193. 52 Maamoun A H, Veldhuis S C, Elbestawi M. Journal of Materials Proces-sing Technology, 2019, 263, 308. 53 Santos Macías J G, Elangeswaran C, Zhao L, et al. Scripta Materialia, 2019, 170, 124. 54 Zhou J, Han X, Li H, et al. Materials & Design, 2021, 210, 110092. 55 Du D, Haley J C, Dong A, et al. Materials & Design, 2019, 181, 107923. 56 Cheng T, Zhang Z Y, Liu Y B, et al. Chinese Journal of Lasers, 2022, 49(8), 184 (in Chinese). 程坦, 张振雨, 刘演冰, 等. 中国激光, 2022, 49(8), 184. 57 Zhuo L, Wang Z, Zhang H, et al. Materials Letters, 2019, 234, 196. 58 Brandl E, Heckenberger U, Holzinger V, et al. Materials & Design, 2012, 34, 159. 59 Gu J, Ding J, Williams S W, et al. Materials Science and Engineering: A, 2016, 651, 18. 60 Vahedi N A, Ghaffari M, Nasiri A. Materials, 2020, 13(12), 2795. 61 Takata N, Kodaira H, Sekizawa K, et al. Materials Science and Enginee-ring: A, 2017, 704, 218.