Abstract: Ceramic/metal brazed assemblies are widely used in mechanical and electronic engineering, energy and chemical industry, aerospace and biomedical fields to make their respective advantages complementary to each other. However, the differences in interatomic bonds and thermal expansion coefficients between ceramics and metals make them hard to be jointed together reliably because of the poor wettability of ceramics and thermal residual stress produced during the brazing process in the ceramic/metal joints. This article overviews the research progress on the reactive wetting of the liquid metals on ceramics and the methods of redu-cing the residual stress levels in the joints. The interfacial reaction products, interfacial structure, reaction thermodynamics, reactive wetting and spreading dynamics models of active brazing alloy/ceramic systems are introduced. The stress relief methods of composite fillers and adding interlayer are summarized. The fundamental issues of reactive wetting and the disadvantages of current stress relief methods are discussed.
1 Fernie J A, Drew R A L, Knowles K M. Joining of engineering ceramics[J]. Int Mater Rev,2009,54(5):283. 2 Laik A, Mishra P, Bhanumurthy K, et al. Microstructural evolution during reactive brazing of alumina to inconel 600 using Ag-based alloy[J]. Acta Mater,2013,61(1):126. 3 Liu Guiwu, Yang Gangbin, Qiao Guanjun, et al. Research progress on brazing and wetting of zirconia ceramic[J]. Rare Metal Mat Eng,2009,38(S1):406(in Chinese). 刘桂武,杨刚宾,乔冠军,等.氧化锆陶瓷润湿及钎焊的研究进展[J].稀有金属材料与工程,2009,38(S1):406. 4 Sobczak N, Singh M, Asthana R. High-temperature capillarity and interfacial phenomena[J]. Curr Opin Solid State Mater Sci,2005,9(4-5):149. 5 Kumar G, Prabhu K N. Review of non-reactive and reactive wetting of liquids on surfaces[J]. Adv Colloid Interface,2007,133(2):61. 6 Hattali M L, Mesrati N, Tréheux D. Electric charge trapping, residual stresses and properties of ceramics after metal/ceramics bon-ding[J]. J Eur Ceram Soc,2012,32(4):717. 7 Xiong J H, Huang J H, Zhang H, et al. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag-Cu-Ti active brazing alloy[J]. Mat Sci Eng A: Struct,2010,527(4-5):1096. 8 Su C Y, Zhuang X Z,Pan C T. Al2O3/SUS304 brazing via AgCuTi-W composite as active filler[J].J Mater Eng Perform,2014,23(3):906. 9 Voytovych R, Robaut F, Eustathopoulos N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Mater,2006,54(8):2205. 10 Hao H Q, Wang Y L, Jin Z H. Interfacial reaction of alumina with Ag-Cu-Ti alloy[J]. J Mater Sci,1995,30(5):1233. 11 Liu G W, Li W, Qiao G J, et al. Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing[J]. J Alloy Compd,2009,470(1-2):163. 12 Liu H B, Zhang L X, Wu L Z, et al. Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil[J]. Mater Sci Eng A: Struct,2008,498(1-2):321. 13 Gambaro S, Muolo M L, Valenza F, et al. Wettability of transpa-rent YAG(Y3Al5O12) by molten Ag-Cu-Ti alloys[J]. J Eur Ceram Soc,2015,35(10):2895. 14 Mao Y W, Liang X P, Deng Q R, et al. Wetting behavior and interfacial interactions of molten Cu50Ti alloy with hexagonal BN and TiB2 ceramics[J]. Ceram Int,2016,42(8):9906. 15 Lin G B, Huang J H, Zhang H. Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag-Cu-Ti short carbon fibers[J]. J Mater Process Technol,2007,189(1-3):256. 16 Guo W, Zhu Y, Wang L, et al. Microstructure evolution and mechanical properties of vacuum-brazed C/C composite with AgCuTi foil[J]. Mater Sci Eng A: Struct,2013,564:192. 17 Jiang Chengyu, Wu Mingfang, Yu Zhishui, et al. Interface structure and formation mechanism of Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V[J]. Rare Metal Mater Eng,2001,30(4):264(in Chinese). 蒋成禹,吴铭方,于治水,等.Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V界面结构及性能研究[J]. 稀有金属材料与工程,2001,30(4):264. 18 Cao J, Zheng Z J, Wu L Z, et al. Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V joints[J]. Mater Sci Eng A: Struct,2012,535:62. 19 Wu M, Cao C Z, et al. Brazing diamond/Cu composite to alumina using reactive Ag-Cu-Ti alloy[J]. Trans Nonferr Metal Soc,2013,23(6):1701. 20 Muolo M L, Ferrera E, Novakovic R, et al. Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr[J]. Scr Mater,2003,48(2):191. 21 Loehman R E, Kotula P G. Spectral imaging analysis of interfacial reactions and microstructures in brazing of alumina by a Hf-Ag-Cu alloy[J]. J Am Ceram Soc,2004,87(1):55. 22 Chen X Y, Zhou Y Z, Jin T, et al. Effect of C and Hf contents on the interface reactions and wettability between a Ni3Al-based superalloy and ceramic mould material[J]. J Mater Sci Technol,2016,32(2):177. 23 Sun Y, Zhang J, Zhang H W, et al. Microstructure evolution of the Si3N4/Si3N4 joints brazed using Au-Ni-V filler alloys with different V content[J]. J Alloy Compd,2011,509(33):8407. 24 Xiong H P, Chen B, Kang Y S, et al. Wettability of Co-V and PdNi-Cr-V system alloys on SiC ceramic and interfacial reactions[J]. Scr Mater,2007,56(2):173. 25 Shi L X, Shen P,Zhang D,et al.Reactive wetting of amorphous sili-ca by molten Al-Mg aloys and their interfacial structures[J]. Appl Surf Sci,2016,377:340. 26 Xiao P, Derby B, Webster J, et al. The characterization of metal/ceramic interfaces using specular neutron reflection[J]. Acta Mater,1997,45(1):273. 27 Naidich Y. About liquid metal/ceramic interface interaction mechanism and mode of a new intermediate compound formation[J]. Curr Opin Solid State Mater Sci,2005,9(4-5):161. 28 Oh S H, Kauffmann Y, Scheu C, et al. Ordered liquid aluminum at the interface with sapphire[J]. Science,2005,310(5748):661. 29 Villanueva W, Boettinger W J, McFadden G B, et al. A diffuse-interface model of reactive wetting with intermetallic formation[J]. Acta Mater,2012,60(9):3799. 30 Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems[J]. Acta Mater,1998,46(7):2319. 31 Saiz E, Tomsia A P, Cannon R M. Ridging effects on wetting and spreading of liquids on solids[J]. Acta Mater,1998,46(7):2349. 32 Wu M, Chang L L, Zhang L, et al. Effects of roughness on the wettability of high temperature wetting system [J]. Surf Coat Technol,2016,287:145. 33 Lin Q L, Shen P, Yang L L, et al. Wetting of TiC by molten Al at 1123-1323K[J]. Acta Mater,2011,59(5):1898. 34 Dezellus O, Eustathopoulos N. Fundamental issues of reactive wetting by liquid metals[J]. J Mater Sci,2010,45(16):4256. 35 Mortensen A, Drevet B, Eustathopoulos N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J]. Scr Mater,1997,36(6):645. 36 Blake T D,Haynes J M. Kinetics of liquid/liquid displacement[J]. J Colloid Interface Sci,1969,30(3):421. 37 Coninck J D, Blake T D. Wetting and molecular dynamics simulations of simple liquids[J]. Annu Rev Mater Res,2008,38(1):1. 38 Benhassine M, Saiz E, Tomsia A P, et al. Nonreactive wetting kinetics of binary alloys: A molecular dynamics study[J]. Acta Mater,2011,59(3):1087. 39 Chai J, et al. Molecular dynamics simulation of wetting on modified amorphous silica surface[J]. Appl Surf Sci,2009,255(22):9078. 40 Van Swol F B. Predictive modeling of reactive wetting and metal joining[R]. Sandia Report, SAND,2013. 41 He Y M, Sun Y, et al. Revealing the strengthening mechanism in Si3N4 ceramic joint by atomic force microscopy coupled with nanoindentation techniques[J]. J Eur Ceram Soc,2012,32(12):3379. 42 Pietrzak K,Kaliński D,Chmielewski M.Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina-heat resisting steel joints[J].J Eur Ceram Soc,2007,27(2-3):1281. 43 Wang X, Cheng L F, Fan S W, et al. Microstructure and mechanical properties of the GH783/2.5D C/SiC joints brazed with Cu-Ti+Mo composite filler[J]. Mater Des,2012,36:499. 44 Song X G, Cao J, Wang Y F, et al. Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint[J]. Mater Sci Eng A: Struct,2011,528(15):5135. 45 Yang M X, Lin T S, He P, et al. In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing[J]. Mater Sci Eng A: Struct,2011,528(9):3520. 46 Choi B J, Kim I L Y, Lee Y Z, et al. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites[J]. Wear,2014,318(1-2):68. 47 Shirzadi A A, Zhu Y, et al. Joining ceramics to metals using metallic foam[J]. Mater Sci Eng A: Struct,2008,496(1-2):501. 48 Liu G W, Qiao G J, Wang H J, et al. Bonding mechanisms and shear properties of alumina ceramic/stainless steel brazed joint[J]. J Mater Eng Perform,2011,20(9):1563. 49 Yang Z W, Zhang L X, et al. Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2-BN joint[J]. Mater Sci Eng A: Struct,2013,575:199. 50 Zhong Z H, Zhou Z J, GE C C. Brazing of doped graphite to Cu using stress relief interlayers[J]. J Mater Process Technol,2009,209(5):2662. 51 Qin Y Q, Feng J C. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J]. Mater Sci Eng A: Struct,2009,525(1-2):181. 52 Zhu D Y, Ma M L, Jin Z H, et al. The effect of molybdenum net interlayer on thermal shock resistance of Al2O3/Nb brazed joint[J]. J Mater Process Technol,1999,96(1-3):19. 53 Lin K L, Singh M, et al. Interfacial and mechanical characterization of yttria-stabilized zirconia (YSZ) to stainless steel joints fabricated using Ag-Cu-Ti interlayers[J]. Ceram Int,2014,40(1):2063. 54 Xia H Y, Wu A P, Fan Y L, et al. Effects of ion implantation on the brazing properties of high purity alumina[J]. Surf Coat Tech-nol,2012,206:2098. 55 Xiong H P, Wan C G, Zhou Z F. Increasing the Si3N4/1.25Cr-0.5Mo steel joint strength by using the method of drilling holes by laser in the surface layer of brazed Si3N4[J]. J Mater Sci Lett,1999,18(18):1461. 56 Xiong J T, Li J L, Zhang F S, et al. Direct joining of 2D carbon/carbon composites to Ti-6Al-4V alloy with a rectangular wave interface[J]. Mater Sci Eng A: Struct,2008,488(1-2):205.