Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (5): 53-57
  材料综述 |
刘虹志, 彭家根, 肖坤祥
中国工程物理研究院电子工程研究所,绵阳 621999
Reactive Wetting and Thermal Residual Stress Releasing of Ceramic/Metal Brazed Joints: A Review
LIU Hongzhi, PENG Jiagen, XIAO Kunxiang
Institute of Electronic Engineering, China Academy of Engineering Physics, Mianyang 621999
下载:  全 文 ( PDF ) ( 1280KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶瓷/金属钎焊件广泛应用于机械电子、能源化工、航空航天和生物医学等领域以实现材料各自性能上的优势互补。然而,陶瓷与金属原子键合上的差异及热膨胀失配使得它们的高可靠连接面临润湿性和残余热应力的问题。综述了国内外在反应润湿和残余热应力缓解方面的研究进展,对活性钎料/陶瓷界面反应产物及界面结构、界面反应热力学、反应润湿及铺展动力学模型进行了介绍,总结了复合钎料法和添加中间层法等残余热应力的缓解方法,并对当前存在的问题进行了初步探讨。
E-mail Alert
关键词:  陶瓷  金属  活性钎焊  反应润湿  残余热应力    
Abstract: Ceramic/metal brazed assemblies are widely used in mechanical and electronic engineering, energy and chemical industry, aerospace and biomedical fields to make their respective advantages complementary to each other. However, the differences in interatomic bonds and thermal expansion coefficients between ceramics and metals make them hard to be jointed together reliably because of the poor wettability of ceramics and thermal residual stress produced during the brazing process in the ceramic/metal joints. This article overviews the research progress on the reactive wetting of the liquid metals on ceramics and the methods of redu-cing the residual stress levels in the joints. The interfacial reaction products, interfacial structure, reaction thermodynamics, reactive wetting and spreading dynamics models of active brazing alloy/ceramic systems are introduced. The stress relief methods of composite fillers and adding interlayer are summarized. The fundamental issues of reactive wetting and the disadvantages of current stress relief methods are discussed.
Key words:  ceramic    metal    active brazing    reactive wetting    thermal residual stress
               出版日期:  2017-03-10      发布日期:  2018-05-02
ZTFLH:  TG454  
基金资助: 国家自然科学基金(51604251);中国工程物理研究院电子工程研究所创新发展基金(S20151113)
作者简介:  刘虹志:男,1983年生,博士,主要研究方向为钎焊技术及其连接机理
刘虹志, 彭家根, 肖坤祥. 陶瓷/金属钎焊体系反应润湿及残余热应力缓解的研究进展*[J]. 《材料导报》期刊社, 2017, 31(5): 53-57.
LIU Hongzhi, PENG Jiagen, XIAO Kunxiang. Reactive Wetting and Thermal Residual Stress Releasing of Ceramic/Metal Brazed Joints: A Review. Materials Reports, 2017, 31(5): 53-57.
链接本文:  或
1 Fernie J A, Drew R A L, Knowles K M. Joining of engineering ceramics[J]. Int Mater Rev,2009,54(5):283.
2 Laik A, Mishra P, Bhanumurthy K, et al. Microstructural evolution during reactive brazing of alumina to inconel 600 using Ag-based alloy[J]. Acta Mater,2013,61(1):126.
3 Liu Guiwu, Yang Gangbin, Qiao Guanjun, et al. Research progress on brazing and wetting of zirconia ceramic[J]. Rare Metal Mat Eng,2009,38(S1):406(in Chinese).
4 Sobczak N, Singh M, Asthana R. High-temperature capillarity and interfacial phenomena[J]. Curr Opin Solid State Mater Sci,2005,9(4-5):149.
5 Kumar G, Prabhu K N. Review of non-reactive and reactive wetting of liquids on surfaces[J]. Adv Colloid Interface,2007,133(2):61.
6 Hattali M L, Mesrati N, Tréheux D. Electric charge trapping, residual stresses and properties of ceramics after metal/ceramics bon-ding[J]. J Eur Ceram Soc,2012,32(4):717.
7 Xiong J H, Huang J H, Zhang H, et al. Brazing of carbon fiber reinforced SiC composite and TC4 using Ag-Cu-Ti active brazing alloy[J]. Mat Sci Eng A: Struct,2010,527(4-5):1096.
8 Su C Y, Zhuang X Z,Pan C T. Al2O3/SUS304 brazing via AgCuTi-W composite as active filler[J].J Mater Eng Perform,2014,23(3):906.
9 Voytovych R, Robaut F, Eustathopoulos N. The relation between wetting and interfacial chemistry in the CuAgTi/alumina system[J]. Acta Mater,2006,54(8):2205.
10 Hao H Q, Wang Y L, Jin Z H. Interfacial reaction of alumina with Ag-Cu-Ti alloy[J]. J Mater Sci,1995,30(5):1233.
11 Liu G W, Li W, Qiao G J, et al. Microstructures and interfacial behavior of zirconia/stainless steel joint prepared by pressureless active brazing[J]. J Alloy Compd,2009,470(1-2):163.
12 Liu H B, Zhang L X, Wu L Z, et al. Vacuum brazing of SiO2 glass ceramic and Ti-6Al-4V alloy using AgCuTi filler foil[J]. Mater Sci Eng A: Struct,2008,498(1-2):321.
13 Gambaro S, Muolo M L, Valenza F, et al. Wettability of transpa-rent YAG(Y3Al5O12) by molten Ag-Cu-Ti alloys[J]. J Eur Ceram Soc,2015,35(10):2895.
14 Mao Y W, Liang X P, Deng Q R, et al. Wetting behavior and interfacial interactions of molten Cu50Ti alloy with hexagonal BN and TiB2 ceramics[J]. Ceram Int,2016,42(8):9906.
15 Lin G B, Huang J H, Zhang H. Joints of carbon fiber-reinforced SiC composites to Ti-alloy brazed by Ag-Cu-Ti short carbon fibers[J]. J Mater Process Technol,2007,189(1-3):256.
16 Guo W, Zhu Y, Wang L, et al. Microstructure evolution and mechanical properties of vacuum-brazed C/C composite with AgCuTi foil[J]. Mater Sci Eng A: Struct,2013,564:192.
17 Jiang Chengyu, Wu Mingfang, Yu Zhishui, et al. Interface structure and formation mechanism of Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V[J]. Rare Metal Mater Eng,2001,30(4):264(in Chinese).
蒋成禹,吴铭方,于治水,等.Al2O3/(Ag72Cu28)97Ti3/Ti-6Al-4V界面结构及性能研究[J]. 稀有金属材料与工程,2001,30(4):264.
18 Cao J, Zheng Z J, Wu L Z, et al. Processing, microstructure and mechanical properties of vacuum-brazed Al2O3/Ti6Al4V joints[J]. Mater Sci Eng A: Struct,2012,535:62.
19 Wu M, Cao C Z, et al. Brazing diamond/Cu composite to alumina using reactive Ag-Cu-Ti alloy[J]. Trans Nonferr Metal Soc,2013,23(6):1701.
20 Muolo M L, Ferrera E, Novakovic R, et al. Wettability of zirconium diboride ceramics by Ag, Cu and their alloys with Zr[J]. Scr Mater,2003,48(2):191.
21 Loehman R E, Kotula P G. Spectral imaging analysis of interfacial reactions and microstructures in brazing of alumina by a Hf-Ag-Cu alloy[J]. J Am Ceram Soc,2004,87(1):55.
22 Chen X Y, Zhou Y Z, Jin T, et al. Effect of C and Hf contents on the interface reactions and wettability between a Ni3Al-based superalloy and ceramic mould material[J]. J Mater Sci Technol,2016,32(2):177.
23 Sun Y, Zhang J, Zhang H W, et al. Microstructure evolution of the Si3N4/Si3N4 joints brazed using Au-Ni-V filler alloys with different V content[J]. J Alloy Compd,2011,509(33):8407.
24 Xiong H P, Chen B, Kang Y S, et al. Wettability of Co-V and PdNi-Cr-V system alloys on SiC ceramic and interfacial reactions[J]. Scr Mater,2007,56(2):173.
25 Shi L X, Shen P,Zhang D,et al.Reactive wetting of amorphous sili-ca by molten Al-Mg aloys and their interfacial structures[J]. Appl Surf Sci,2016,377:340.
26 Xiao P, Derby B, Webster J, et al. The characterization of metal/ceramic interfaces using specular neutron reflection[J]. Acta Mater,1997,45(1):273.
27 Naidich Y. About liquid metal/ceramic interface interaction mechanism and mode of a new intermediate compound formation[J]. Curr Opin Solid State Mater Sci,2005,9(4-5):161.
28 Oh S H, Kauffmann Y, Scheu C, et al. Ordered liquid aluminum at the interface with sapphire[J]. Science,2005,310(5748):661.
29 Villanueva W, Boettinger W J, McFadden G B, et al. A diffuse-interface model of reactive wetting with intermetallic formation[J]. Acta Mater,2012,60(9):3799.
30 Eustathopoulos N. Dynamics of wetting in reactive metal/ceramic systems[J]. Acta Mater,1998,46(7):2319.
31 Saiz E, Tomsia A P, Cannon R M. Ridging effects on wetting and spreading of liquids on solids[J]. Acta Mater,1998,46(7):2349.
32 Wu M, Chang L L, Zhang L, et al. Effects of roughness on the wettability of high temperature wetting system [J]. Surf Coat Technol,2016,287:145.
33 Lin Q L, Shen P, Yang L L, et al. Wetting of TiC by molten Al at 1123-1323K[J]. Acta Mater,2011,59(5):1898.
34 Dezellus O, Eustathopoulos N. Fundamental issues of reactive wetting by liquid metals[J]. J Mater Sci,2010,45(16):4256.
35 Mortensen A, Drevet B, Eustathopoulos N. Kinetics of diffusion-limited spreading of sessile drops in reactive wetting[J]. Scr Mater,1997,36(6):645.
36 Blake T D,Haynes J M. Kinetics of liquid/liquid displacement[J]. J Colloid Interface Sci,1969,30(3):421.
37 Coninck J D, Blake T D. Wetting and molecular dynamics simulations of simple liquids[J]. Annu Rev Mater Res,2008,38(1):1.
38 Benhassine M, Saiz E, Tomsia A P, et al. Nonreactive wetting kinetics of binary alloys: A molecular dynamics study[J]. Acta Mater,2011,59(3):1087.
39 Chai J, et al. Molecular dynamics simulation of wetting on modified amorphous silica surface[J]. Appl Surf Sci,2009,255(22):9078.
40 Van Swol F B. Predictive modeling of reactive wetting and metal joining[R]. Sandia Report, SAND,2013.
41 He Y M, Sun Y, et al. Revealing the strengthening mechanism in Si3N4 ceramic joint by atomic force microscopy coupled with nanoindentation techniques[J]. J Eur Ceram Soc,2012,32(12):3379.
42 Pietrzak K,Kaliński D,Chmielewski M.Interlayer of Al2O3-Cr functionally graded material for reduction of thermal stresses in alumina-heat resisting steel joints[J].J Eur Ceram Soc,2007,27(2-3):1281.
43 Wang X, Cheng L F, Fan S W, et al. Microstructure and mechanical properties of the GH783/2.5D C/SiC joints brazed with Cu-Ti+Mo composite filler[J]. Mater Des,2012,36:499.
44 Song X G, Cao J, Wang Y F, et al. Effect of Si3N4-particles addition in Ag-Cu-Ti filler alloy on Si3N4/TiAl brazed joint[J]. Mater Sci Eng A: Struct,2011,528(15):5135.
45 Yang M X, Lin T S, He P, et al. In situ synthesis of TiB whisker reinforcements in the joints of Al2O3/TC4 during brazing[J]. Mater Sci Eng A: Struct,2011,528(9):3520.
46 Choi B J, Kim I L Y, Lee Y Z, et al. Microstructure and friction/wear behavior of (TiB+TiC) particulate-reinforced titanium matrix composites[J]. Wear,2014,318(1-2):68.
47 Shirzadi A A, Zhu Y, et al. Joining ceramics to metals using metallic foam[J]. Mater Sci Eng A: Struct,2008,496(1-2):501.
48 Liu G W, Qiao G J, Wang H J, et al. Bonding mechanisms and shear properties of alumina ceramic/stainless steel brazed joint[J]. J Mater Eng Perform,2011,20(9):1563.
49 Yang Z W, Zhang L X, et al. Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2-BN joint[J]. Mater Sci Eng A: Struct,2013,575:199.
50 Zhong Z H, Zhou Z J, GE C C. Brazing of doped graphite to Cu using stress relief interlayers[J]. J Mater Process Technol,2009,209(5):2662.
51 Qin Y Q, Feng J C. Active brazing carbon/carbon composite to TC4 with Cu and Mo composite interlayers[J]. Mater Sci Eng A: Struct,2009,525(1-2):181.
52 Zhu D Y, Ma M L, Jin Z H, et al. The effect of molybdenum net interlayer on thermal shock resistance of Al2O3/Nb brazed joint[J]. J Mater Process Technol,1999,96(1-3):19.
53 Lin K L, Singh M, et al. Interfacial and mechanical characterization of yttria-stabilized zirconia (YSZ) to stainless steel joints fabricated using Ag-Cu-Ti interlayers[J]. Ceram Int,2014,40(1):2063.
54 Xia H Y, Wu A P, Fan Y L, et al. Effects of ion implantation on the brazing properties of high purity alumina[J]. Surf Coat Tech-nol,2012,206:2098.
55 Xiong H P, Wan C G, Zhou Z F. Increasing the Si3N4/1.25Cr-0.5Mo steel joint strength by using the method of drilling holes by laser in the surface layer of brazed Si3N4[J]. J Mater Sci Lett,1999,18(18):1461.
56 Xiong J T, Li J L, Zhang F S, et al. Direct joining of 2D carbon/carbon composites to Ti-6Al-4V alloy with a rectangular wave interface[J]. Mater Sci Eng A: Struct,2008,488(1-2):205.
[1] 梁斌斌, 郭炜, 刘振兴, 杨洪广. 高活性氚钛靶膜固氦特性研究[J]. 材料导报, 2019, 33(z1): 153-157.
[2] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[3] 褚涛, 王五松, 王学杰, 张田才, 杨桂, 翟继卫. 高机械品质因数压电陶瓷材料的研究进展及应用[J]. 材料导报, 2019, 33(z1): 165-170.
[4] 杨飞跃, 赵爽, 陈国兵, 陈俊, 杨自春. Si3N4泡沫陶瓷的制备过程影响因素及复合化研究进展[J]. 材料导报, 2019, 33(z1): 178-183.
[5] 孙亚兵, 包兆先, 霍子伟, 杨玲, 许积文, 周昌荣, 王华. (Bi0.5Na0.5)0.94Ba0.06Ti1-x(Yb0.5Nb0.5)xO3无铅陶瓷的结构,储能、应变、介电及阻抗性能研究[J]. 材料导报, 2019, 33(z1): 171-177.
[6] 张金中, 李坚, 胡海兵, 关立伟. Yb∶MgAg纳米双层阴极的光电特性改善[J]. 材料导报, 2019, 33(z1): 297-299.
[7] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[8] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[9] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[10] 秦小凤, 曹嘉真, 汪小莉, 张贤明, 吕晓书. 纳米零价铁优化体系及其在环境中的应用研究进展[J]. 材料导报, 2019, 33(9): 1550-1557.
[11] 卢勇, 冯辉霞, 张晓芳. 金属表面植酸转化膜研究进展[J]. 材料导报, 2019, 33(9): 1455-1461.
[12] 王盼, 童领, 周志文, 杨杰, 王茺, 陈安然, 王荣飞, 孙韬, 杨宇. 金属辅助化学刻蚀法制备硅纳米线的研究进展[J]. 材料导报, 2019, 33(9): 1466-1474.
[13] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[14] 时博, 王金辉, 魏福安. 金属玻璃自由体积理论的研究概述[J]. 材料导报, 2019, 33(7): 1221-1226.
[15] 韩银娜, 张小军, 李龙, 周德敬. 铝基层状复合材料界面金属间化合物的研究现状[J]. 材料导报, 2019, 33(7): 1198-1205.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Full text