Please wait a minute...
材料导报  2019, Vol. 33 Issue (19): 3236-3241    https://doi.org/10.11896/cldb.18090097
  无机非金属及其复合材料 |
喷墨打印中的界面润湿问题
宁洪龙, 朱镇南, 蔡炜, 魏靖林, 周尚雄, 陶瑞强, 陈建秋, 刘贤哲, 姚日晖, 彭俊彪
华南理工大学材料科学与工程学院,高分子光电材料与器件研究所,发光材料与器件国家重点实验室,广州 510640
Interfacial Wetting in Inkjet Printing
NING Honglong, ZHU Zhennan, CAI Wei, WEI Jinglin, ZHOU Shangxiong, TAO Ruiqiang, CHEN Jianqiu,LIU Xianzhe, YAO Rihui, PENG Junbiao
State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Photoelectric Materials and Devices, School of Materials Science and Enginee-ring, South China University of Technology,Guangzhou 510640
下载:  全 文 ( PDF ) ( 2082KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,印刷电子因成本低、能耗低、工艺简便等优势,在微电子制造领域展现出巨大的应用潜力,引起了人们的广泛重视。喷墨打印作为一种重要的印刷电子工艺,能够通过电脑编程直接实现图形化,相比真空光刻工艺,具有快速、灵活等优势,因此一直以来都是学术研究的热点。喷墨打印中涉及到墨水材料的喷射及其在打印基底上的沉积过程,在这个过程中墨水将接触到喷头及基板材料并发生润湿行为,因此材料界面的润湿问题关系到打印的图形化以及功能化效果,对最终打印结果有着重要影响。
从界面的角度来看,喷墨打印中的润湿问题主要是墨水-打印基底的界面润湿问题;单纯从表面的角度来看,喷墨打印中的润湿问题可以分为墨水(液相)的润湿性问题以及基板(固相)的润湿性问题。研究中通常对液相或固相的润湿性进行控制来实现预期的打印效果。研究表明,墨水的润湿性主要在喷墨过程中影响其喷墨状态,以及在铺展过程中影响打印精度和表面形貌等,而基板的润湿性则主要在墨水铺展成形的过程中决定打印图形化的效果。墨水成分、基板材料很大程度上决定了其表面张力以及表面自由能,通过调整墨水溶剂的配方或加入添加剂以及改变基板材料成分能够显著改变其润湿性。此外,对固体基板来说,还可以对其进行各种表面修饰和处理,通过改变其表面物理化学结构来调整表面自由能,从而改善液相与固相的润湿效果,或使基板不同区域产生润湿性差异,约束液相在特定固相区域上的润湿行为,从而实现特殊的打印需求。
本文归纳了近年来喷墨打印中界面润湿问题的相关研究进展,从墨水材料润湿性研究以及基板材料润湿性研究两个方面分析了界面润湿对喷墨打印效果的影响,总结了喷墨打印制备电子器件中的一些重要问题(如打印精度、表面形貌控制等)以及不同处理工艺的特点和优势。随着新时代微电子制造业提出更高集成度的要求,喷墨打印作为新兴制造技术,势必进一步提高其打印分辨率。在此背景下,润湿性研究作为关系到图形化的重要问题,仍旧是挑战与机遇并存。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宁洪龙
朱镇南
蔡炜
魏靖林
周尚雄
陶瑞强
陈建秋
刘贤哲
姚日晖
彭俊彪
关键词:  喷墨打印  界面  润湿  图形化  表面处理    
Abstract: Recently, printing electronic has attracted wide attention for its low cost, low energy consumption and simple process, which shows promising application prospect in microelectronics manufacturing. Inkjet printing is one of the most important methods of printing electronics allowing editing patterns through computer programming, which has always been a hot pot of research for its high speed and flexibility compared with vacuum process. During inkjet printing, deposition of ink on substrate involves interfacial wetting between ink and nozzle and between ink and substrate so that wetting can significantly affect graphing and function of printing patterns.
From the aspect of interface, wetting in inkjet printing mainly refers to wetting between ink and substrate; from the aspect of surface, wettabilities of ink and substrate are two main issues of wetting in inkjet printing. One of the two issues is investigated to achieve expected printing results in general. Researches show that wettability of ink can evidently affect droplet jetting behavior, printing resolution and printing morphology, while wettability of substrate mainly affects quality of printing pattern graphing. By adjusting components of ink and substrate, surface tension of ink and surface free energy of substrate can be significantly adjusted. For substrate, it is also effective to make it under different kinds of surface treatment to change its surface physical or chemical structure, and thus change its surface free energy, or make its different regions obtain different wettabi-lities, which achieves special printing results by limitation of ink on particular region.
In this review, recent progress in wetting of inkjet printing has been summarized and effect of interfacial wetting on printing results has been demonstrated from aspects of ink wettability and substrate wettability. Important questions such as printing resolution and morphology modulation have been proposed and characteristics and advantages of each methods have been discussed. As higher integration is demanded, it is sure that printing resolution needs to be further improved. As such an important role wettability plays in inkjet printing patterning, it still remains a challenge and opportunities.
Key words:  inkjet printing    interface    wettability    graphing    surface treatment
               出版日期:  2019-10-10      发布日期:  2019-08-15
ZTFLH:  TN41  
基金资助: 国家重点研发计划(2017YFB0404703)
作者简介:  宁洪龙(1971—),湖南省株洲人,华南理工大学教授,博士生导师;2004年于清华大学获博士学位,主要从事新型信息显示材料与器件系统集成的研究。姚日晖(1981—),湖南涟源人,博士,华南理工大学副教授;2008年于中山大学获博士学位,主要从事光电材料与器件领域的研究。yaorihui@scut.edu.cn
引用本文:    
宁洪龙, 朱镇南, 蔡炜, 魏靖林, 周尚雄, 陶瑞强, 陈建秋, 刘贤哲, 姚日晖, 彭俊彪. 喷墨打印中的界面润湿问题[J]. 材料导报, 2019, 33(19): 3236-3241.
NING Honglong, ZHU Zhennan, CAI Wei, WEI Jinglin, ZHOU Shangxiong, TAO Ruiqiang, CHEN Jianqiu,LIU Xianzhe, YAO Rihui, PENG Junbiao. Interfacial Wetting in Inkjet Printing. Materials Reports, 2019, 33(19): 3236-3241.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.18090097  或          http://www.mater-rep.com/CN/Y2019/V33/I19/3236
1 Perelaer J, Smith P J, Mager D, et al. Journal of Materials Chemistry,2010,20(39),8446.2 Hyun W J, Secor E B, Hersam M C, et al. Advanced Materials,2015,27(1),109.3 Dong X F, Zhu N. Mechine Tool and Hydraulics,2017,45(18),111 (in Chinese).董雪峰,朱宁.机床与液压,2017,45(18),111.4 Garnier F, Hajlaoui R, Yassar A, et al. Science,1994,265(5179),1684.5 Singh M, Haverinen H M, Dhagat P, et al. Advanced Materials,2010,22(6),673.6 Hoth C N, Schilinsky P, Choulis S A, et al. Nano Letters,2008,8(9),2806.7 Sridhar A, Blaudeck T, Baumann R R. Material Matters,2011,6(1),12.8 Han X G, Cui L X, Wang W Q, et al. Mechine Tool and Hydraulics,2017,45(18),70(in Chinese).韩兴国,崔立秀,王为庆,等.机床与液压,2017,45(18),70.9 Basaran O A, Gao H, Bhat P P. Annual Review of Fluid Mechanics,2013,45(45),85.10 Wijshoff H. Physics Reports,2010,491(4),77.11 Roth E A, Xu T, Das M, et al. Biomaterials,2004,25(17),3707.12 Gennes P G D. Review of Modern Physics,1985,57(3),827.13 Choi K H, Rahman A, Ko J B, et al. International Journal of Advanced Manufacturing Technology,2010,48(1-4),165.14 Kim Y J, Choi J, Sang U S, et al. Japanese Journal of Applied Physics,2010,49(6),1212.15 He B, Yang S, Qin Z, et al. Scientific Reports,2017,7(1),11841.16 Karpitschka S, Riegler H. Physical Review Letters,2012,109(6),66103.17 Tekin E, de Gans B, Schubert U S. Journal of Materials Chemistry,2004,14(17),2627.18 Kosmala A, Wright R, Zhang Q, et al. Materials Chemistry & Physics,2011,129(3),1075.19 Liu M, Wang J, He M, et al. ACS Applied Materials & Interfaces,2014,6(16),13344.20 Li J, Ye F, Vaziri S, et al. Advanced Materials,2013,25(29),3985.21 Deegan R D, Bakajin O, Dupont T F, et al. Nature,2012,389(6653),827.22 Deegan R D, Bakajin O, Dupont T F, et al. Physical Review E,2000,62(1),756.23 Deegan R D. Physical Review E,2000,61(1),475.24 Eom S H, Park H, Mujawar S H, et al. Organic Electronics,2010,11(9),1516.25 Park S J, Lee E J, Kwon S H. Bulletin-Korean Chemical Society,2007,28(28),188.26 Wan Y, Lou J, Xu J, et al. In: IEEE 2013 International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale(3M-NANO). Suzhou, China,2013,pp.97.27 Xu Z. IET Science, Measurement & Technology,2014,9(1), 113.28 Tracton A A. Coatings technology handbook,CRC Press, Boca Raton,2005.29 David S, Sefiane K, Tadrist L. Colloids & Surfaces A: Physicochemical & Engineering Aspects,2007,298(1-2),108.30 Bourgesmonnier C, Shanahan M E R. Langmuir,1995,11(7),2820.31 Pietrikova A, Lukacs P, Jakubeczyova D, et al. Circuit World,2016,42(1),9.32 Lessing J, Glavan A C, Walker S B, et al. Advanced Materials,2014,26(27),4677.33 Van Osch T H J, Perelaer J, de Laat A W M, et al. Advanced Materials,2010,20(2),343.34 Morra M, Occhiello E, Garbassi F. Journal of Colloid & Interface Science,1989,132(2),504.35 Morra M, Occhiello E, Garbassi F. Langmuir,1989,5(3),872.36 Park Y, Lee J, Chung I, et al. Japanese Journal of Applied Physics,1999,38(5B),L577.37 Gokus T, Nair R R, Bonetti A, et al. ACS Nano,2009,3(12),3963.38 Morent R, Geyter N D, Leys C. Nuclear Instruments and Methods in Physics Research B,2008,266(12-13),3081.39 Kaplan S L, Rose P W, Nguyen H X, et al. Materials-Pathway to the Future,1988,19(4),55.40 Lai J, Sunderland B, Xue J, et al. Applied Surface Science,2006,252(10),3375.41 Nguyen P Q, Yeo L P, Lok B K, et al. ACS Applied Materials & Interfaces,2014,6(6),4011.42 Mohanty S, Ylitalo C, Woo O S. Langmuir,2004,20(6),2277.43 Ely F, Avellaneda C O, Paredez P, et al. Synthetic Metals,2011,161(19-20),2129.44 McDonald J C, Whitesides G M. Accounts of Chemical Research,2002,35(7),491.45 Packham D E. International Journal of Adhesion & Adhesives,2003,23(6),437.46 Cruz S, Rocha L A, Viana J C. Applied Surface Science,2016,360,198.47 Huang L, Huang Y, Liang J, et al. Nano Research,2011,4(7),675.48 Lim J A, Cho J H, Jang Y, et al. Thin Solid Film,2006,515(4),2079.49 Kim C, Nogi M, Suganuma K, et al. ACS Applied Materials & Interfaces,2012,4(4),2168.50 Yeo L P, Lok B K, Nguyen Q M P, et al. International Journal of Advanced Manufacturing Technology,2014,71(9-12),1749.51 Wang J Z, Zheng Z H, Li H W, et al. Nature Materials,2004,3(3),171.52 Kawase T, Shimoda T, Newsome C, et al. Thin Solid Film,2003,438,279.
[1] 岳慧芳, 冯可芹, 庞华, 张瑞谦, 李垣明, 吕亮亮, 赵艳丽, 袁攀. 粉末冶金法烧结制备SiC/Zr耐事故复合材料的研究[J]. 材料导报, 2019, 33(z1): 321-325.
[2] 薛艺, 田青超. 硬质合金切削刀具研究进展[J]. 材料导报, 2019, 33(z1): 353-357.
[3] 薛秀丽, 曾超峰, 王世斌, 李林安, 王志勇. 溶剂对PMMA基底上金属薄膜形貌的影响[J]. 材料导报, 2019, 33(z1): 412-415.
[4] 刘新灵, 陶春虎, 王天宇. 夹杂物形状对夹杂/基体界面应力应变分布的影响[J]. 材料导报, 2019, 33(z1): 436-439.
[5] 王婷, 张守海, 蹇锡高, 刘乾, 刘泽元. 界面聚合法合成含杂萘酮联苯结构共聚芳酯[J]. 材料导报, 2019, 33(z1): 495-498.
[6] 施方长, 王玉, 高延敏. 改性含N小分子用于金属表面锈层处理对环氧涂层防腐性能的研究[J]. 材料导报, 2019, 33(z1): 523-526.
[7] 邓云华, 陶军, 马旭颐. TC4钛合金刚性拘束热自压扩散连接接头疲劳性能分析[J]. 材料导报, 2019, 33(9): 1449-1454.
[8] 蔺宏涛, 江海涛, 王怡嵩, 张坤, 张贵华. 6016-T4铝合金与镀锌IF钢搅拌摩擦焊接头的组织与性能[J]. 材料导报, 2019, 33(9): 1443-1448.
[9] 李雪换, 底月兰, 王海斗, 李国禄, 董丽虹, 马懿泽. 基于内聚力模型的热障涂层失效行为研究[J]. 材料导报, 2019, 33(9): 1500-1504.
[10] 翟恒来, 齐宁, 孙逊, 张翔宇, 樊家铖. 一种新型纳米SiO2降压增注剂的制备与评价[J]. 材料导报, 2019, 33(6): 975-979.
[11] 邱博, 邢书明, 董琦. 颗粒增强金属基复合材料界面结合强度的表征:理论模型、有限元模拟和实验测试[J]. 材料导报, 2019, 33(5): 862-870.
[12] 陈豪, 肖清泉, 谢泉, 王坤, 史娇娜. 近红外Mg2Si/Si异质结光电二极管的结构设计与仿真[J]. 材料导报, 2019, 33(20): 3358-3362.
[13] 刘晗, 薛松柏, 王刘珏, 林尧伟, 陈宏能. 金基中低温钎料的研究现状与展望[J]. 材料导报, 2019, 33(19): 3189-3195.
[14] 党力, 李宛琴, 吕智慧, 胡杰林, 次旺拉姆, 刘威. 溶液共混法制备碱式硫酸镁晶须/聚丙烯复合材料及其力学性能[J]. 材料导报, 2019, 33(18): 3135-3139.
[15] 王刘珏,薛松柏,刘晗,林尧伟,陈宏能. 电子封装用Au-20Sn钎料研究进展[J]. 材料导报, 2019, 33(15): 2483-2489.
[1] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[2] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[3] Ming HE,Yao DOU,Man CHEN,Guoqiang YIN,Yingde CUI,Xunjun CHEN. Preparation and Characterization of Feather Keratin/PVA Composite Nanofibrous Membranes by Electrospinning[J]. Materials Reports, 2018, 32(2): 198 -202 .
[4] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[5] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[8] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[9] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[10] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed