Please wait a minute...
材料导报  2021, Vol. 35 Issue (7): 7019-7026    https://doi.org/10.11896/cldb.20060263
  材料与可持续发展(四)--材料再制造与废弃物料资源化利用* |
固废基无机纤维的研究进展
张金才, 王志英, 程芳琴
山西大学资源与环境工程研究所,国家环境保护废弃资源高效利用重点实验室,太原 030006
Progress on the Study of Solid Waste Based Inorganic Fibers
ZHANG Jincai, WANG Zhiying, CHENG Fangqin
State Environmental Protection Key Laboratory of Efficient Utilization of Waste Resources, Institute of Resource and Environmental Engineering, Shanxi University, Taiyuan 030006, China
下载:  全 文 ( PDF ) ( 2495KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 无机工业固废纤维化利用是当前资源循环利用领域的研究热点之一,该技术的研发和产业化推广不仅能将廉价的固废资源转变成高价值纤维类产品,也能有效地节省自然资源的开发和保护生态环境。传统的岩棉、石棉、玻璃和玄武岩纤维类产品生产均需开采大量的自然资源。近几十年工业高速发展产生的大量工业固废急需开发利用,从化学组成上比较,所得固废与其相关产品所需原料十分接近,可以通过多种固废的复配和工艺调控实现类似产品的生产,如固废基矿棉、连续纤维等。矿棉类产品经过几十年的研发和投入,产业化产品基本取代了石棉和岩棉类产品。近些年,连续纤维的研发也日渐兴起,无论是理论研究,还是设备的开发进展迅速。利用无机工业固废研发纤维产品,可以充分借鉴玻璃纤维和玄武岩纤维方面的研究积累。工业固废是工业生产的副产物,其化学组成虽与传统纤维原料雷同,但物相组成均异,特别在高温熔融特性、多固废升温共融和熔体特性研究方面是需要突破的重点。当前研究证明由于物相差异导致的熔融特性差异困难完全可以克服。可通过调控固废混料内含的有价组分研发出具有突出功能的纤维类产品,如优于玻璃和玄武岩纤维的耐高温性、热稳定性纤维产品。本文从生产工艺、关键装备、化学组成、高温熔融特性和纤维表面改性几方面详细论述了无机工业固废纤维的研发进展,对短纤维和连续纤维在工艺装备方面的异同做了详细的阐述,并对固废基纤维未来的发展进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张金才
王志英
程芳琴
关键词:  工业固废  无机纤维  化学组成  成纤工艺  粘度    
Abstract: The fibers produced by inorganic solid waste is one of the research focuses on the resource recycling field. It can not only transform waste resources into high-value fiber products but also effectively avoid the exploitation of natural resources and protect the ecological environment. The produce of traditional fibers, such as rock wool, asbestos, glass, and basalt fibers, need consuming a lot of natural resources. Over the last few decades,a large amount of industrial solid waste generated by industrial production is in urgent need of recycling and utilization. In contrast,the chemical composition of the solid wastes are very close to the natural mineral required for the above fibers. That makes the fibers produced from industry solid wastes possible through multiple solid wastes mix with each other and advance in the technology process. The waste-based short fiber, namely, mineral wool products, has replaced asbestos and rock wool in recent decades. In recent years, waste-based continuous fiber has attracted a lot of attention.Whether theoretical or equipment research progress quickly. On the study of solid waste-based fibers, much literature on traditional inorganic fiber can give help, such as high-temperature melting and fiber forming process as well as fiber equipment. A problem that must be solved is the difference in phase composition between natural mineral and so-lid waste even if the chemical constituent is very similar by artificial regulation. The key technologies are the learn about the high-temperature mel-ting and multi-solid waste co-melting. Current research indicates that these technical difficulties can overcome. Moreover, the excellent functional fiber products may be prepared by utilizing the characteristics of solid waste raw, such as unusually high temperature resistance and thermal stability. In this paper, the study progress on the waste-based fibers is discussed in detail from several aspects: production technology, crucial equipment, chemical composition, the characteristics of high-temperature melting of a variety of solid wastes, and surface modification of the fibers. The similarities and differences between short fibers and continuous fibers are also discussed in detail. The future development of solid waste based fibers has also prospected.
Key words:  industry solid waste    inorganic fibers    chemical composition    fiber forming process    viscosity
               出版日期:  2021-04-10      发布日期:  2021-04-22
ZTFLH:  TQ343+4  
基金资助: 山西省重大科技专项项目( MC2014-06;20181101004)以及山西大学人才专项项目(0228-228545021)
作者简介:  张金才,山西大学资源与环境工程研究所, 工学博士, 副教授, 硕士研究生导师。1999年毕业于湖南大学化学化工学院。于2006年6月和2012年6月在中国科学院研究生院获得工学硕士和博士学位。先后在山西煤炭化学研究所, 北京矿冶研究总院工作。2015年7月入职山西大学工作。研究方向为煤基固废建材化利用,矿物粉体材料功能化改性技术, 功能型涂料和保温材料制备新技术、新工艺探索。先后参与完成十多项科研项目,包括北矿院重大科研项目、山西省科技重大专项、山西省仪器专项、企业横向项目。发表论文30篇, 其中SCI 9篇,EI 2篇。申请专利12件, 授权7件。
引用本文:    
张金才, 王志英, 程芳琴. 固废基无机纤维的研究进展[J]. 材料导报, 2021, 35(7): 7019-7026.
ZHANG Jincai, WANG Zhiying, CHENG Fangqin. Progress on the Study of Solid Waste Based Inorganic Fibers. Materials Reports, 2021, 35(7): 7019-7026.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.20060263  或          http://www.mater-rep.com/CN/Y2021/V35/I7/7019
1 Ahmaruzzaman M. Progress in Energy & Combustion Science, 2010, 36(3), 327.
2 Duan S Y, Li X, Liao H Q, et al. Concrete, 2020, 364(2), 94(in Chinese).
段思宇, 李溪, 廖红强, 等. 混凝土, 2020, 364(2), 94.
3 Fan X F, Yao J B, Tie F H. New Building Materials, 2019, 1, 69.
4 Zhang Q J, Yang Y R, Xiang L. Polymer Testing, 2019, 73, 418.
5 Ma P Y, Xie W P, Chen H Y, et al. Inorganic Chemicals Industry, 2017, 49(2), 57(in Chinese).
马蓬杨, 谢卫苹, 陈浩远, 等. 无机盐工业, 2017, 49(2), 57.
6 Li Y D, Lu J S, Zeng Y P, et al. Materials Chemistry and Physics, 2018, 213, 518.
7 Shi J J, Li Q, Li H Q, et al. Resources, Conservation and Recycling, 2017, 124, 67.
8 Lin B, Li S P, Hou X J, et al. Journal of Alloys and Compounds, 2015, 623, 359.
9 Wei C D, Yang D F, Li Y, et al. Acta Mineralogica Sinica, 2005, 25(3), 197(in Chinese).
巍存弟, 杨殿范, 李益, 等. 矿物学报, 2005, 25(3), 197.
10 Gámiz E, Melgosa M, Sánchez M, et al. Applied Clay Science, 2005, 28, 269.
11 Yang H, Li W G, Ye L J, et al. Conservation and Utilization of Mineral Resources, 2018(2), 118(in Chinese).
杨航, 李伟光, 叶力佳, 等.矿产保护与利用, 2018(2), 118.
12 Cui B X. Preparation of high strength and low density fracturing proppant. Master's Thesis, Taiyuan University of technology, China, 2016(in Chinese).
崔冰峡. 高强度低密度压裂支撑剂的制备研究. 硕士学位论文, 太原理工大学, 2016.
13 Qin Q, Wang J M, Hu S J. China Mining Magazine, 2015, 24(7), 39(in Chinese).
秦倩, 王金满, 胡斯佳.中国矿业, 2015, 24(7), 39.
14 Zhang S, Yang G L, Yang X, et al. Bricks, 2019(1), 59(in Chinese).
张帅, 杨国良, 杨翔, 等. 砖瓦, 2019(1), 59.
15 Gorlov Yu P, Ustenko A A, Sardarov B S, et al. Glass and Ceramics, 1979, 36, 539.
16 Peng S N, Liu Q Y, Dai H, et al. Coal Processing & Comprehensive Utilization, 1999(1), 49(in Chinese).
彭苏宁, 刘庆云, 戴红, 等. 煤炭加工与综合利用, 1999(1), 49.
17 Nian H E, Li J H, Liu T Y. Thermal Insulation & Energy-Saving Technology, 2006(2), 27(in Chinese).
年洪恩, 李金洪, 刘同义.保温材料与节能技术, 2006(2), 27.
18 王习东, 赵大伟, 路康, 等. 中国专利,ZL104261669A, 2015.
19 张文生, 高枫. 中国专利,CN105366947A, 2016.
20 Ma Q, Ding L F, Wang Q W, et al. Materials Letters, 2018, 231, 119.
21 Hellmut Eckert. Journal of Sol-Gel Science and Technology, 2018, 88, 263.
22 Chen X F, Zhang Y S, David Hui, et al. Composites Part B, 2017, 116, 53.
23 Chen X F. Standards and Quality of China Petroleum and Chemical Industry, 2012(3), 86(in Chinese).
陈晓峰. 中国石油和化工标准与质量, 2012(3), 86.
24 Wang H. Study on the hot melt characteristics of multiple industrial solid wastes at high temperature. Master's Thesis, Shanxi University, China, 2017(in Chinese).
王皓. 高温下多种工业固体废弃物复配纤维化热熔特性研究.硕士学位论文, 山西大学, 2017.
25 Wu Z S, Wang X, Liu J X, et al. Handbook of Natural Fibres, 2020, 13, 434.
26 李晓静, 闫升, 贾昕, 等. 中国专利,CN109942181A, 2019.
27 徐建, 康惠芬, 任立广.中国专利,CN109851227A, 2019.
28 张立忠, 姜洪金. 中国专利,CN110590123A, 2019.
29 Liu J X, Yang J P, Chen M R, et al. Thermochimica Acta, 2018,660,56.
30 Moiseev E A, Gutnikov S I, Malako A P, et al. Journal of Inorganic Materials, 2008, 44, 1026.
31 王习东, 赵大伟, 路康, 等. 中国专利,ZL201410498584X, 2015.
32 Wang W C, Zhou B, Xu S H, et al. Progress in Materials Science, 2019, 101, 90.
33 Sheldon G L. Platinum Metal Review, 1977, 21(1), 18.
34 Gutnikov Si, Malakho A P, Lazoryak B I, et al. Russian Journal of Inorganic Chemistry, 2009, 54(2), 191.
35 Felix Bauer, Manuel Kempf, Frank Weiland, et al. Composites Part B, 2018, 145, 121.
36 Wang Z G, Zhang W Q, Zhang Y J, et al. Fiber Glass, 2015(3), 40(in Chinese).
王正刚, 张卫强, 张义军, 等. 玻璃纤维, 2015(3), 40.
37 Moiseev E A, Gutnikov S L, Malakho A P, et al. Inorganic Materials, 2008, 44(9), 1026.
38 Xing Dan, Xi Xiongyu, Ma Pengcheng. Composites Part A, 2019, 119, 127.
39 Sorensen P M, Pind M, Yue Y Z, et al. Journal of Non-crystalline Solids, 2005, 351, 1246.
40 Manylov M S, Gutnikov S I, Pokholok K V, et al. Mendeleev Communications, 2013, 23, 361.
41 Yilmaz S, Ozkan O T, Gunay V, et al. Ceramics International, 1996, 22, 477.
42 Karamanovm A,Pisciellsa P,Pelino M, et al. Journal of the American Ceramic Society, 2000, 20, 2233.
43 Mikhail S, Manylov, Sergey I, et al. Mendeleev Communications, 2015, 25, 386.
44 Zhishen Wu, Xin Wang, Jianxun Liu, et al. Handbook of natrual fibres (Second edition), Woodhead Publishing, 2020.
45 Chen X F, Zhang Y S, David H, et al. Composites Part B, 2017, 116, 53.
46 Lu P. Journal of Wuhan University of Technology(Materials Science Edition), 2001(6), 23.
47 TianY L, Sun S B. New glass technology, China Light Industry Press, China, 2009(in Chinese).
田英良, 孙诗兵. 新编玻璃工艺学, 中国轻工业出版社, 2009.
48 Ma Z B, Tian X Q, Liao H Q, et al. Journal of Cleaner Production, 2018, 171, 464.
49 Corrales L E, Keefer K D. The Journal of Physical Chemistry B, 1997, 106(15), 6460.
50 Vargas S, Frandsen F J, Dam-Johan S K. Progress in Energy and Combustion Science, 2001, 27, 237.
51 El-Badry K, Ghoneim N A, El-Batal H A, et al. Sprechsaal, 1981, 8, 599.
52 Bodnar L, Cempa S, Tomasek K, et al. Chemical Papers-chemicke Zvesti, 1978, 6, 798.
53 Bottinga Y, Weill D F. American Journal of Science, 1972, 272, 438.
54 Stein D J, Spera F J. American Mineralogist, 1993, 78, 710.
55 Catherine D, Philippe V, Angel F, et al. Cantrib Mineral Petrol, 1987,96,78.
56 Goto A, Oshima H, Nishida Y. Journal Volcanology Geotherm Research, 1997, 76, 319.
57 Scholze H, Kreidl N J, Uhlmann C R,et al. Viscosity and relaxation, Academic Press, New York, 1986.
58 Taylor T D, Rindone G E. Journal of the American Ceramic Society, 1970, 53(12), 692.
59 Dingwell D B, Virgo D. Geochim Cosmochim Acta, 1987, 51, 195.
60 Zhang Y, Cai L. Fine and Specialty Chemicals, 2018, 26(12), 1(in Chinese).
张颖, 蔡蕾. 精细与专用化学品, 2018, 26(12), 1.
61 康富. 中国专利,CN108793720A, 2018.
62 姜德彬, 罗大伟. 中国专利,CN201910945505.8, 2019.
63 Zhang N, Zhang R H, Li W H, et al. Synthetic Fiber, 2021, 50(3), 1(in Chinese).
张楠, 章若红, 李文慧, 等. 合成纤维, 2021, 50(3), 1.
64 Meng X, Tian X Q, Bai Y F. Development Orientation of Building Mate-rials, 2019,17(20),9(in Chinese).
孟欣, 田学勤, 白云峰. 建材发展导向, 2019, 17(20), 9.
65 Lei Y, Liang T F. Synthetic Fiber, 2021, 50(2),54(in Chinese).
雷瑛, 梁腾飞. 合成纤维, 2021, 50(2),54.
66 浙江石金玄武岩连续纤维股份有限公司.中国专利,CN107021618A, 2017.
67 Wang S. Brick and Tile, 2020(12), 223(in Chinese).
王帅. 砖瓦, 2020(12), 223.
68 Dzhigiris D D, Makhova M F, Gorobinskaya V D, et al. Steklo I Keram, 1983, 9, 14.
69 Makhova M F, Bocharova I N, Mishchenko E S, et al. Steklo I Keram, 1989, 9, 14.
70 Li J, ShenS J, Yuan H, et al. Materials Report B:Research Papers, 2013, 27(10), 71(in Chinese).
李静, 申士杰, 袁卉, 等. 材料导报:研究篇, 2013, 27(10), 71.
71 Iorio M, Santarelli M L, González-Gaitano G, et al. Applied Surface Science, 2018, 427, 1248.
72 Wang Z T, Luo H J, Zhang L, et al. Applied Surface Science, 2020, 521, 146196.
73 Cao H L, Yan Y W, Yue L P, et al. Basalt riber, the first edition, National Defense Industry Press, China, 2017.
74 España J M, Samper M D, Fages E, et al. Polymer Composites, 2013, 34(3), 376.
75 Xiao C F. Mechanical properties of fiber composite fiber matrix. China Petrochemical Press, China, 1995(in Chinese).
肖长发.纤维复合材料-纤维基体力学性能, 中国石化出版社, 1995.
76 Yi X S, Du S Y, Zhang L T. Handbook of composite materials, Chemical Industry Press, China, 2009(in Chinese).
益小苏, 杜善义, 张立同.复合材料手册, 化学工业出版社, 2009.
77 Wei B, Song S H, Cao H L. Materials and Design, 2011, 32, 4180.
78 Rybin V A, Utkin A V, Baklanova N I. Corrosion Science, 2016, 102, 503.
79 Huo W J, Zhang Z G, Wang M C, et al. Acta Materiae Compositac Sinica, 2007, 24(6), 77(in Chinese).
霍文静, 张佐光, 王明超, 等.复合材料学报, 2007, 24(6), 77.
80 Wang X D, Yun S N, Zhang T H, et al. Materials Reports A:Review Papers, 2017, 31(3), 77(in Chinese).
王晓东, 云斯宁, 张太宏, 等.材料导报:综述篇, 2017, 31(3), 77.
81 Li J, Shen S J, Li W N, et al. Acta Material Compositae Sinica, 2014, 31(4), 888(in Chinese).
李静, 申士杰, 李伟娜, 等.复合材料学报, 2014, 31(4), 888.
82 Morent R, DeGeyter N, Verschuren J, et al. Surface & Coatings Techno-logy, 2008, 202(14), 3427.
83 Kurniawan D, Kim B S, Lee H Y, et al. Composites Part B-Engineering, 2012, 43(3), 1010.
84 Liu Y, Xu H, Ge L, et al. Journal of Adhesion Science and Techology, 2007, 21(8), 663.
85 Garifullin A R, Abdullin I S H, Skidchenko E A, et al. Journal of Phy-sics: Conference Series, 2016, 669(1), 012054.
86 Wang G J, Liu Y W, Guo Y J, et al. Surface & Coatings Technology, 2007, 201(15), 6565.
87 Jin T T, Shen S J, Li J, et al. Fiber Reinf Plast/Composites, 2015(6), 29(in Chinese).
靳婷婷, 申士杰, 李静, 等. 玻璃钢/复合材料, 2015(6), 29.
88 Cai F Q. High Tech Fibers and Applications, 2016, 41(6), 1(in Chinese).
蔡福泉.高科技纤维与应用, 2016, 41(6),1.
[1] 梁捷, 耿佃桥, 张群. 固液密度比对PMMA/HDPE悬浮液粘度的影响[J]. 材料导报, 2021, 35(4): 4181-4185.
[2] 朱永刚, 左延红, 程桦, 邵正香. GMAW驼峰形成机理中熔池粘度影响的量化研究[J]. 材料导报, 2020, 34(Z2): 469-475.
[3] 他进国, 黄一凡, 甄小娟. 500 keV质子辐照对氧化石墨烯薄膜材料的影响研究[J]. 材料导报, 2020, 34(Z1): 39-42.
[4] 马亮, 杨静, 王继平, 许奎. 凝胶注模制备环形二氧化铀芯块工艺研究[J]. 材料导报, 2020, 34(Z1): 157-160.
[5] 于丽, 卞永宁, 刘杨, 徐新生. 低浓度水基多壁碳纳米管纳米流体的流变特性[J]. 材料导报, 2020, 34(22): 22010-22014.
[6] 张宏, 刘新, 乔志. 沥青胶浆粘度及流变特性的影响因素研究[J]. 材料导报, 2019, 33(14): 2381-2385.
[7] 王亚丽, 姚羽涵, 崔素萍, 王卉, 王为. 高炉矿渣的组成和结构对其在碱性环境中早期水化特性的影响[J]. 材料导报, 2018, 32(22): 3989-3994.
[8] 叶深杰, 余锋, 王克强, 王文锦, 陈忠仁. 嵌段共聚物PS-b-PMMA在PCHMA/PMMA共混体系中增容效果的研究:嵌段比、分子量及粘度的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 87-93.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[4] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[5] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[6] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[7] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[8] ZHANG Le, ZHOU Tianyuan, CHEN Hao, YANG Hao, ZHANG Qitu, SONG Bo, WONG Chingping. Advances in Transparent Nd∶YAG Laser Ceramics[J]. Materials Reports, 2017, 31(13): 41 -50 .
[9] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[10] CHEN Bida, GAN Guisheng, WU Yiping, OU Yanjie. Advances in Persistence Phosphors Activated by Blue-light[J]. Materials Reports, 2017, 31(21): 37 -45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed