Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3394-3404    https://doi.org/10.11896/j.issn.1005-023X.2018.19.014
  金属与金属基复合材料 |
镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施
霍苗,刘林,黄太文,杨文超,李亚峰,王晓娟,张军,傅恒志
西北工业大学凝固技术国家重点实验室,西安 710072
Formation Mechanism, Influencing Factors and Control Measures of Low Angle Boundaries in Ni-based Single Crystal Superalloys
HUO Miao, LIU Lin, HUANG Taiwen, YANG Wenchao, LI Yafeng,
WANG Xiaojuan, ZHANG Jun, FU Hengzhi
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072
下载:  全 文 ( PDF ) ( 3562KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镍基单晶高温合金被广泛用于制备先进航空发动机及工业燃气轮机的关键热端部件,随着铸件结构的复杂化和大型化以及合金中难熔元素的增多,凝固缺陷的形成倾向增大。其中,小角度晶界是定向凝固制备单晶高温合金铸件过程中经常出现的一类缺陷,它会破坏单晶的完整性,一旦超过容限就会对铸件的力学性能造成恶劣影响,随着单晶高温合金服役温度的不断提高,小角度晶界对性能的损害会更为严重。因此,小角度晶界日益成为镍基单晶高温合金发展和应用中需要解决的重要课题,受到国内外研究者的广泛关注。
单晶中的小角度晶界与传统意义上的小角度晶界有所不同,是指相邻枝晶间的取向偏离。研究者们在不同晶界偏离角及不同温度条件下就小角度晶界对合金持久性能、蠕变性能及疲劳性能的影响进行了研究,结果发现:当偏离角较小时,小角度晶界对合金性能的影响并不明显,但是随着偏离角的增大及温度的升高,合金的性能均会降低。为了探寻有效的预防和控制措施,研究者们就小角度晶界的形成机制及影响因素进行了研究。关于小角度晶界的形成机制,被大家普遍认同的观点是:枝晶在分枝生长过程中发生了塑性变形,从而导致了枝晶的取向偏离,当枝晶再次汇聚时就会产生小角度晶界。但是,关于枝晶变形的原因则没有一致看法。另外,关于小角度晶界影响因素的研究还不是很系统,主要集中在合金成分及晶界强化元素、凝固参数及取向、铸件尺寸等方面。
镍基单晶高温合金中的小角度晶界归根结底是由枝晶的取向偏离导致的,而取向偏离的影响因素复杂,因此小角度晶界的出现很难完全避免。目前,主要通过取向控制以减少小角度晶界的产生,并通过晶界强化以提高合金对小角度晶界的容限。
本文阐明了单晶高温合金中的小角度晶界的概念,总结了小角度晶界对合金力学性能的影响,综述了小角度晶界形成机制的研究进展,分析了合金元素、微量元素、凝固条件和铸件结构等因素对小角度晶界形成的影响,在此基础上,提出了减少小角度晶界的措施和强化晶界的途径,最后就未来的研究方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
霍苗
刘林
黄太文
杨文超
李亚峰
王晓娟
张军
傅恒志
关键词:  镍基单晶高温合金  小角度晶界  定向凝固    
Abstract: Ni-based single crystal superalloys are widely used to prepare the key hot end components of advanced aero-engines and industrial gas turbines. With the more complicated structure and larger size of the castings, and the increase of refractory elements, the tendency of solidification defects will increase. The low angle boundaries (LABs) are common defects in the casting process of single crystal superalloys by directional solidification. They can destroy the integrity of the single crystal and decrease the mechanical properties of castings once the deviation angle exceeds the tolerance. With the improvement of the service temperature of the single crystal superalloy, the damage of the LABs to the mechanical properties will be more serious. Therefore, the LABs have become an important issue to be solved in the development and application of Ni-based single crystal superalloys, and have been widely concerned by researchers at home and abroad.
The LABs in the single crystal are orientation deviations between the adjacent dendrites, different from that of the traditional. The effect of the LABs on rupture lives, creep properties and fatigue properties under different grain boundary misorientations and temperatures have been studied. The results showed that, the effects of LABs on the mechanical properties were not obvious when misorientations were small. However, with the increase of misorientations and the temperature, all the properties deteriorated rapidly. In order to explore the effective prevention and control measures, the formation mechanism and the influencing factors of LABs have been studied. The widely accepted formation mechanism is as follows: the plastic deformations of dendrites occur during the branching growth, resulting in their orientation deviations, when the dendrites converge again, the LABs form. However, there is no consensus on the causes of dendrite deformation. In addition, the research on the influence factors of LABs is not very systematic. It mainly focused on alloy composition and grain boundary strengthening elements, solidification parameters and orientations, and cas-tings size.
The LABs in Ni-based single crystal superalloys are caused by the orientation deviation of dendrites, whereas their influencing factors are complex, thus the LABs are almost inevitable. At present, it is mainly through the orientation control to decrease the formation of LABs, and by the grain boundary strengthening to increase the tolerance of the alloys to the LABs.
In this paper, the concept of LABs in single crystal superalloys are clarified, the effects of LABs on the mechanical properties are summarized, the formation mechanisms of LABs are reviewed and the influences of different factors are analyzed, such as alloy element, microelement, solidification conditions and casting structure, etc. On this basis, some possible measures to reduce the LABs and the way to strengthen the grain boundaries are proposed, and the future research aspects are stated.
Key words:  Ni-based single crystal superalloy    low angle boundaries (LABs)    direction solidification
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TG132.3  
基金资助: 国家自然科学基金项目(51331005;51771148;51631008;51690163;51501152);国家重点基础研究发展计划项目(2016YFB0701400; 2017YFB0702902)
作者简介:  霍苗:女,1983年生,博士研究生,主要从事单晶高温合金研究 E-mail:huomiao8888@163.com
引用本文:    
霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
HUO Miao, LIU Lin, HUANG Taiwen, YANG Wenchao, LI Yafeng, WANG Xiaojuan, ZHANG Jun, FU Hengzhi. Formation Mechanism, Influencing Factors and Control Measures of Low Angle Boundaries in Ni-based Single Crystal Superalloys. Materials Reports, 2018, 32(19): 3394-3404.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.014  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3394
1 Reed R C. The superalloys: Fundamentals and applications[M].Cambridge: Cambridge University Press,2006.
2 Pollock T M, Tin S. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties[J].Journal of Propulsion & Power,2006,22(2):361.
3 Rahimian M, Milenkovic S, Sabirov I. Microstructure and hardness evolution in MAR-M247 Ni-based superalloy processed by controlled cooling and double heat treatment[J].Journal of Alloys & Compounds,2013,550(2):339.
4 Graverend J B L, et al. Creep of a nickel-based single-crystal superalloy during very high-temperature jumps followed by synchrotron X-ray diffraction[J].Acta Materialia,2015,84:65.
5 Yeh A C, Tin S. Effects of Ru and Re additions on the high temperature flow stresses of Ni-base single crystal superalloys[J].Scripta Materialia,2005,52(6):519.
6 Tin S, Pollock T M, Murphy W. Stabilization of thermosolutal convective instabilities in Ni-based single-crystal superalloys: Carbon additions and freckle formation[J].Metallurgical & Materials Tran-sactions A,2001,32(7):1743.
7 Li Q, Shen J, Qin L, et al. Investigation on freckles in directionally solidified CMSX-4 superalloy specimens with abrupt cross section variation[J].Journal of Alloys & Compounds,2017,691:997.
8 Ter Vehn M M, et al. Undercooling related casting defects in single crystal turbine blades[C]∥Superalloys 1996. Los Angeles,1996:471.
9 Yang X L, Dong H B, Wang W, et al. Microscale simulation of stray grain formation in investment cast turbine blades[J].Materials Science & Engineering A,2004,386(1):129.
10 Aveson J W, et al. On the origin of sliver defects in single crystal investment castings[J].Acta Materialia,2013,61:5162.
11 Newell M, D’Souza N, Green N R. Formation of low angle boundaries in Ni-based superalloys[J].Materials Science & Engineering A,2005,413(1-4):567.
12 Bogdanowicz W, Albrecht R, Sieniawski J, et al. The subgrain structure in turbine blade roots of CMSX-4 superalloy[J].Journal of Crystal Growth,2014,401(9):418.
13 邓安华.金属材料简明辞典[M].北京:冶金工业出版社,1992:345.
14 Pollock T M, Murphy W H, Goldman E H, et al. Grain defect formation during directional solidification of nickel base single crystals[C]∥Superalloys 1992.Pennsylvania,1992:125.
15 Shi Z X, Li J R, Liu S Z, et al. Formation mechanism of low angle boundary of DD6 single crystal superalloy blades[J].Advanced Materials Research,2012,535-537:1019.
16 Shah D M, Cetel A. Evaluation of PWA1483 for large single crystal IGT blade applications[C]∥Superalloys 2000.Boston,2000:29.
17 Shi Zhenxue, Li Jiarong, Liu Shizhong, et al. Microstructures of low angle boundaries of DD6 single crystal superalloy blades[J].Rare Metal Materials and Engineering,2011,40(12):2117(in Chinese).
史振学,李嘉荣,刘世忠,等.DD6单晶高温合金叶片小角度晶界组织[J].稀有金属材料与工程,2011,40(12):2117.
18 Ross E W, O’Hara K S. Rene N4: A first generation single crystal turbine airfoil alloy with improved oxidation resistance, low angle boundary strength and superior long time rupture strength[J].Superalloys 1996,1996:19.
19 Cao Liang, Zhou Yizhou, Jin Tao, et al. Effect of grain boundary angle on stress rupture properties of a Ni-based bicrystal superalloy[J].Acta Metallurgica Sinica,2014,50(1):11(in Chinese).
曹亮,周亦胄,金涛,等.晶界角度对一种镍基双晶高温合金持久性能的影响[J].金属学报,2014,50(1):11.
20 Shi Z, Li J, Liu S, et al. Effect of LAB on the stress rupture properties and fracture characteristic of DD6 single crystal superalloy[J].Rare Metal Materials and Engineering,2012,41(6):962.
21 Patel Y, Browning P F, Fitzpatrick M D, et al. The effect of primary axis and low angle boundary misorientation on CMSX-10K mechanical properties[C]∥ASME Turbo Expo 2000: Power for Land, Sea and Air.Munich,2000.
22 Shi Zhenxue, Li Jiarong, Liu Shizhong, et al. Tensile properties of twist low angle boundary of DD6 single crystal superalloy[J].Journal of Aeronautical Materials,2009,29(3):88(in Chinese).
史振学,李嘉荣,刘世忠,等.DD6单晶高温合金扭转小角度晶界的拉伸性能[J].航空材料学报,2009,29(3):88.
23 Li J R, Zhao J Q, Liu S Z, et al. Effects of low angle boundaries on the mechanical properties of single crystal superalloy DD6[C]∥Superalloys 2008.Pennsylvania,2008:443.
24 Tamaki H, Yoshinari A, Okayama A, et al. Development of a low angle grain boundary resistant single crystal superalloy YH61[C]∥Superalloys 2000.Boston,2000:757.
25 Shi Zhenxue, et al. Effect of low angle boundary on high cycle fatigue properties of single crystal superalloy[J].Transactions of Materials and Heat Treatment,2015,36(s1):52(in Chinese).
史振学,等.小角度晶界对单晶高温合金高周疲劳性能的影响[J].材料热处理学报,2015,36(s1):52.
26 Napolitano R E, Schaefer R J. The convergence-fault mechanism for low-angle boundary formation in single-crystal castings[J].Journal of Materials Science,2000,35(7):1641.
27 Newell M, et al. Role of dendrite branching and growth kinetics in the formation of low angle boundaries in Ni-base superalloys[J].Materials Science & Engineering A,2005,412:307.
28 Newell M, D’Souza N, Green N R. Formation of low angle boundaries in Ni-based superalloys[J].International Journal of Cast Metals Research,2009,22(1-4):66.
29 Siredey N, et al. Dendritic growth and crystalline quality of nickel-base single grains[J].Journal of Crystal Growth,1993,130:132.
30 Dragnevski K, Mullis A M, Walker D J, et al. Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts[J].Acta Materialia,2002,50(14):3743.
31 Dahle A K, John D H S, Thevik H J, et al. Modeling the fluid-flow-induced stress and collapse in a dendritic network[J].Metallurgical and Materials Transactions B,1999,30(2):287.
32 Zhang X, Zhou Y, Han Y, et al. Dendritic growth pattern and dendritic network distortion in the platform of a Ni-based superalloy[J].Journal of Materials Science & Technology,2014,30(3):223.
33 Zhang Xiaoli. Fundamental research on production of single crystal superalloys by directional solidification[D].Graduate University of Chinese Academy of Sciences,2013(in Chinese).
张小丽.单晶高温合金定向凝固制备的基础研究[D].中国科学院大学,2013.
34 Zhang Jun, et al. Advances in solidification characteristics and typical casting defects in nickel-based single crystal superalloys[J].Acta metallurgica sinica,2015(10):1163(in Chinese).
张军,等.单晶高温合金凝固特性与典型凝固缺陷研究[J].金属学报,2015(10):1163.
35 Al-Jarba K A, Fuchs G E. Carbon-containing single-crystal nickel-based superalloys: Segregation behavior and carbide formation[J].JOM,2004,56(9):50.
36 Li Y F, Liu L, et al. The formation mechanism, influencing factor and processing control of stray grains in Nickle-based single crustal superalloys[C]∥Superalloys 2016. Pennsylvania,2016:293.
37 Chen Xianzhou. Low angle boundaries in homebred third generation Ni-based single crystal superalloy[D].Xi’an: Northwestern Polytechnical University,2014(in Chinese).
陈先洲.国产第三代镍基单晶高温合金中小角度晶界的研究[D].西安:西北工业大学,2014.
38 Jiao Juanjuan. The effects of dendritic orientation and alloy composition on solidification defects of single crystal superalloys[D].Xi’an: Northwestern Polytechnical University,2015(in Chinese).
焦娟娟.单晶高温合金晶体取向及合金成分对凝固缺陷影响研究[D].西安:西北工业大学,2015.
39 Guo Hailong. Effect of hafnium and boron on low angle boundary of nickel-based single crystal superalloys[D].Xi’an: Northwestern Polytechnical University,2016(in Chinese).
郭海龙.铪和硼对镍基单晶高温合金中小角度晶界的影响[D].西安:西北工业大学,2016.
40 Mihalisin J R, Corrigan J, Launsbach M, et al. Some effects of carbon in the production of single crystal superalloy castings[C]∥Superalloys 2004. Pennsylvania,2004:795.
41 Yan B C, Zhang J, Lou L H. Effect of boron additions on the microstructure and transverse properties of a directionally solidified superalloy[J].Materials Science & Engineering A,2008,474(1-2): 39.
42 Kotval P S, Venables J D, Calder R W. The role of hafnium in modifying the microstructure of cast nickel-base superalloys[J].Metallurgical Transactions,1972,3(2):457.
43 Shah D M, Cetel A. Evaluation of PWA1483 for large single crystal IGT blade applications[C]∥Superalloys 2000.Boston,2000:2954.
44 Chen Q Z, Jones C N, Knowles D M. The grain boundary microstructures of the base and modified RR 2072 bicrystal superalloys and their effects on the creep properties[J].Materials Science & Engineering A,2004,385(1):402.
45 Durandcharre M. The microstructure of superalloys[M].CRC Press,Washington,1997.
46 D’Souza N, et al. Directional and single-crystal solidification of Ni-base superalloys: Part Ⅰ. The role of curved isotherms on grain selection[J].Metallurgical and Materials Transactions A,2000,31:2877.
47 Elliott A J, et al. Directional solidification of large superalloy cas-tings with radiation and liquid-metal cooling: A comparative assessment[J].Metallurgical & Materials Transactions A,2004,35:3221.
48 Chen Xianzhou, et al. Effect of solidification rate and rhenium on low angle boundaries of nickel base single crystal superalloy blades[J].Hot Working Technology,2014(11):1(in Chinese).
陈先州,等.凝固速率及铼对镍基单晶高温合金叶片小角度晶界的影响[J].热加工工艺,2014(11):1.
49 D’Souza N, Jennings P A, Yang X L, et al. Seeding of single-crystal superalloys-role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J].Metallurgical & Materials Transactions B,2005,36(5):657.
50 Clements M L,Price A R, Bellows R S. Advanced solidification processing of an industrial gas turbine engine component[J].Journal of the Minerals, Metals and Materials Society,2003,55(3):27.
51 Kurz W, Fisher D J. Fundamentals of solidification[M].Switzerland: Trans Tech Publications LTD,1998.
52 Li Y, Liu L, Huang T, et al. The process analysis of seeding-grain selection and its effect on stray grain and orientation control[J].Journal of Alloys & Compounds,2016,657:341.
53 冯小辉,李应举,杨院生.外加电场对单晶高温合金生长取向偏离的影响[C]∥中国高温合金年会.北京,2015.
54 傅恒志,郭景杰,刘林,等.先进材料定向凝固[M].北京:科学出版社,2008.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[3] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[4] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[5] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[6] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[7] 李勇, 朱靖, 王莹, 李焕, 赵亚茹. 定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理[J]. 《材料导报》期刊社, 2018, 32(4): 602-605.
[8] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[9] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[10] 郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
[11] 李亚峰, 刘林, 黄太文, 张军, 傅恒志. 镍基单晶高温合金涡轮叶片缘板杂晶的研究进展*[J]. CLDB, 2017, 31(9): 118-122.
[12] 赵志龙, 高建军, 韦路锋, 崔凯, 侯铁城. NiAl-W纳米多孔阵列制备方法研究*[J]. 《材料导报》期刊社, 2017, 31(18): 25-27.
[13] 陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
[14] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[15] 蒋睿哲, 顾玉丽, 何玉怀. 单晶高温合金DD6不同状态下的元素分布与力学行为*[J]. 《材料导报》期刊社, 2017, 31(12): 93-97.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed