Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 96-99    https://doi.org/10.11896/j.issn.1005-023X.2017.014.020
  材料研究 |
高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*
陈超, 陈芙蓉, 解瑞军, 路遥
内蒙古工业大学材料科学与工程学院, 呼和浩特 010051;
Effect of High-energy Shot Peening Treatment on Micro-structure and Properties of 7A52 Aluminum Alloy
CHEN Chao, CHEN Furong, XIE Ruijun, LU Yao
School of Materials Science and Engineering,Inner Mongolia University of Technology, Hohhot 010051;
下载:  全 文 ( PDF ) ( 1636KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着金属表面自纳米化技术的不断发展,金属材料的表面性能得到了明显提升。通过SEM、EBSD、TEM和HRTEM等分析测试手段,对高能喷丸处理后的7A52铝合金表面纳米化机理进行了分析。结果表明,随喷丸时间的延长铝合金表面硬度显著增大,当喷丸时间为50 min时,表面硬度约为270HV,与基体相比提高了近1.5倍。此时铝合金外表面均匀分布着平均晶粒尺寸约为14.16 nm的等轴晶,距表面约60 μm处分布着以小角度晶界为主的微米级亚晶。7A52铝合金表面纳米级晶粒的形成机理主要是:晶粒变形使晶内逐渐形成高浓度位错,位错的缠绕、塞积对基体晶粒进行了初步分割细化,在往复载荷的作用下最终在表面形成了等轴的随机取向分布的纳米级晶粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈超
陈芙蓉
解瑞军
路遥
关键词:  7A52铝合金  高能喷丸  位错  大角度晶界  小角度晶界    
Abstract: With the development of surface self-nanocrystallization technology of metallic materials, the metallic surface pro-perties have been enhanced to a certain degree. In this paper, the mechanism of surface nanocrystallization on 7A52 aluminum alloy after high-energy shot peening treatment (HESP) was characterized by SEM, EBSD,TEM and HRTEM. The results show that the microhardness increase with the increase of shot peening time. After 50 min HESP, the surface hardness is about 270HV, which can approximately increase to 1.5 times compared to the base metal; the average grain size is about 14.16 nm; the subsurface layer of 60 μm deep is composed of micrometers sub-grains. The surface layer grain refinement process of 7A52 aluminum alloy involves formation of dislocation pile-up and tangling, which resulted in deformed grains. Finally, nano-scale grains with equiaxed shape and random crystallographic orientations are formed upon the multidirectional repeated loads.
Key words:  7A52 aluminum alloy    high-energy shot peening    dislocation    high-angle boundary    low-angle boundary
               出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG176  
基金资助: *国家自然科学基金(50765003)
作者简介:  陈超:男,1990年生,硕士研究生,主要从事铝合金激光焊焊接工艺、铝合金表面纳米化研究 E-mail:929368583@qq.com 陈芙蓉:通讯作者,女,1971年生,教授,博士研究生导师,主要从事焊接结构及其接头表面纳米化研究 E-mail:7075cfr@163.com
引用本文:    
陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
CHEN Chao, CHEN Furong, XIE Ruijun, LU Yao. Effect of High-energy Shot Peening Treatment on Micro-structure and Properties of 7A52 Aluminum Alloy. Materials Reports, 2017, 31(14): 96-99.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.020  或          http://www.mater-rep.com/CN/Y2017/V31/I14/96
1 Huang L, Lu J, Troyon M. Nanomechanical properties of nanostructured titanium prepared by SMAT[J]. Surf Coat Technol,2006,201(201):208.
2 Lin Y, Lu J, Wang L, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel[J]. Acta Mater,2006,54(20):5599.
3 Zhou L, He W, Luo S, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. J Alloys Compd,2016,655:66.
4 Dai K, Villegas J, Shaw L. An analytical model of the surface roughness of an aluminum alloy treated with a surface nanocrystallization and hardening process[J]. Scr Mater,2005,52(4):259.
5 Dai K, Villegas J, Stone Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J]. Acta Mater,2004,52(20):5771.
6 Zhao K, Liu Y, Yao T, et al. Surface nanocrystallization of Ti-45Al-7Nb-0.3W intermetallics induced by surface mechanical grin-ding treatment[J]. Mater Lett,2016,166:59.
7 Ren X D, Huang J J, Zhou W F, et al. Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing[J]. Mater Des,2015,86:421.
8 张晓燕. 材料科学基础[M].北京:北京大学出版社,2009.
[1] 陈连生, 李跃, 田亚强, 郑小平, 魏英立, 宋进英. 两相区形变对含铜低碳钢合金元素配分的影响[J]. 材料导报, 2019, 33(6): 1032-1035.
[2] 岳全召, 刘林, 杨文超, 黄太文, 孙德建, 霍苗, 张军, 傅恒志. 先进镍基单晶高温合金蠕变行为的研究进展[J]. 材料导报, 2019, 33(3): 479-489.
[3] 何闯,刘林,黄太文,杨文超,张军,傅恒志. 镍基单晶高温合金中的位错及其对蠕变行为的影响[J]. 材料导报, 2019, 33(17): 2918-2928.
[4] 巴奇楠, 宋仁伯, 冯一帆, 李论. 表面爆炸处理后的ZGMn13Cr2钢的冲击磨损性能及硬化机理[J]. 材料导报, 2019, 33(10): 1712-1716.
[5] 卢叶茂, 梁益龙, 龙绍檑, 杨明, 尹存宏. 淬火20CrNi2Mo低碳钢中大角度晶界对强度的影响[J]. 材料导报, 2018, 32(24): 4339-4345.
[6] 祝佳林, 刘施峰, 柳亚辉, 姬静利, 李丽娟. 冷轧高纯钽板退火过程中微观组织及织构演变的梯度效应[J]. 材料导报, 2018, 32(20): 3595-3600.
[7] 豆艳坤,贺新福,贾丽霞,王东杰,吴石,杨文. Cu析出物对α-Fe辐照硬化贡献机理研究[J]. 《材料导报》期刊社, 2018, 32(2): 307-312.
[8] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[9] 贾翠玲, 陈芙蓉. 超声冲击处理对铝合金焊接应力的影响[J]. 材料导报, 2018, 32(16): 2816-2821.
[10] 郭苗苗,刘新宝,朱 麟,张 琦,刘剑秋. 基于EBSD技术的P91钢蠕变过程中小角度晶界演化行为表征[J]. 《材料导报》期刊社, 2018, 32(10): 1747-1751.
[11] 王俊, 司乃潮, 王正军, 刘光磊, 司松海. 锻造热处理工艺对Al-7Si-1.6Cu合金组织和力学性能的影响*[J]. 《材料导报》期刊社, 2017, 31(4): 70-74.
[12] 孙宇, 周琛, 万志鹏, 任丽丽, 胡连喜. 金属材料动态再结晶模型研究现状*[J]. 《材料导报》期刊社, 2017, 31(13): 12-16.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed