Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 100-104    https://doi.org/10.11896/j.issn.1005-023X.2017.014.021
  材料研究 |
热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响*
王凯博, 吕耀辉, 刘玉欣, 孙哲, 徐滨士
装甲兵工程学院,装备再制造技术国防科技重点实验室, 北京 100072;
Influence of Heat Input on Microstructure and Mechanical Property of Pulsed Plasma Arc Additive Manufactured Inconel 718 Superalloy
WANG Kaibo, LU Yaohui, LIU Yuxin, SUN Zhe, XU Binshi
National Defense Key Laboratory for Remanufacturing Technology, Academy of Armored Force Engineering, Beijing 100072;
下载:  全 文 ( PDF ) ( 1730KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用基于脉冲等离子弧的增材制造技术在Q235基板上加工了Inconel 718合金试样,通过改变功率和焊接速度研究了不同热输入对试样组织与性能演变规律的影响。借助光学显微镜、扫描电镜、能谱分析、维氏硬度仪等手段对试样晶粒形态、枝晶间距、元素偏析、析出相成分及分布、显微硬度等进行表征,结果表明随着热输入从1.08×106 J/m 增大至1.76×106 J/m,晶粒形态从细长的柱状枝晶逐渐转变为粗大的胞状枝晶,枝晶间距从6.34 μm增大至9.09 μm,Nb、Mo等元素在枝晶间偏析加剧,Laves相由颗粒状、块状逐渐变为长链状,显微硬度不断下降。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王凯博
吕耀辉
刘玉欣
孙哲
徐滨士
关键词:  热输入  增材制造  脉冲等离子弧  组织    
Abstract: The effect of heat input on microstructure and mechanical property of pulsed plasma arc additive manufactured Inconel 718 superalloy samples were investigated. Five different heat inputs ranging from 1.08×106 J/m to 1.76×106 J/m were adop-ted by changing power and welding speed. The microstructure morphology, dendritic spacing, elemental segregation and interdendritic Laves phase were also studied by using optical microscopy (OM), scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The results show that as the heat inputs increase, the microstructure morphology is changed from columnar dendrites to cellular dendrites, and dendritic spacing also increases from 6.34 μm to 9.09 μm. Consequently, elemental segregation of Nb and Mo are promoted so that the morphology of interdendritic Laves phase is changed from particles to chains, which leads to the decrease of microhardness.
Key words:  heat input    additive manufacturing    pulsed plasma arc    microstructure
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG456.2  
基金资助: *国家重点研发计划项目(2016YFB1100201)
作者简介:  王凯博:男,1991年生,硕士研究生,研究方向为镍基高温合金的等离子增材制造 E-mail:wkb03632@alumni.sjtu.edu.cn 吕耀辉:通讯作者,男,1970年生,副研究员,博士研究生导师,研究方向为等离子焊接、等离子增材制造 E-mail:yhlv127@163.com
引用本文:    
王凯博, 吕耀辉, 刘玉欣, 孙哲, 徐滨士. 热输入对脉冲等离子弧增材制造Inconel 718合金组织与性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 100-104.
WANG Kaibo, LU Yaohui, LIU Yuxin, SUN Zhe, XU Binshi. Influence of Heat Input on Microstructure and Mechanical Property of Pulsed Plasma Arc Additive Manufactured Inconel 718 Superalloy. Materials Reports, 2017, 31(14): 100-104.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.021  或          https://www.mater-rep.com/CN/Y2017/V31/I14/100
1 Wang X K, Xing L, Xu W P, et al. Influence of process parameters on formation of friction stir additive manufacturing on aluminum alloy[J]. J Mater Eng,2015,43(5):8(in Chinese).
王忻凯, 邢丽, 徐卫平, 等. 工艺参数对铝合金搅拌摩擦增材制造成形的影响[J]. 材料工程,2015,43(5):8.
2 Thjis L, Verhaeghe F, Craeghs T, et al. A study of the microstructural evolution during selective laser melting of Ti-6Al-4V[J]. Acta Mater,2010,58(9):3303.
3 Ströβner J, Terock M, Glatzel U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting (SLM)[J]. Adv Eng Mater,2015,17(8):1099.
4 Ram G D J, Reddy A V, Rao K P, et al. Microstructure and tensile properties of Inconel 718 pulsed Nd-YAG laser welds[J]. J Mater Process Technol,2005,167(1):73.
5 Richards N L, Chaturvedi M C. Effect of minor elements on wel-dability of nickel base superalloys[J]. Int Mater Rev,2000,45(3):109.
6 Jawwad A K A, Strangwood M, Davis C L. Microstructural modification in full penetration and partial penetration electron beam welds in INCONEL-718 (IN-718) and its effect on fatigue crack initiation[J]. Metall Mater Trans A,2005,36(5):1237.
7 Liu F, Lin X, Leng H, et al. Microstructural changes in a laser so-lid forming Inconel 718 superalloy thin wall in the deposition direction[J]. Opt Laser Technol,2013,45(2):330.
8 Chen Y, Zhang K, Huang J, et al. Characterization of heat affected zone liquation cracking in laser additive manufacturing of Inconel 718[J]. Mater Des,2016,90:586.
9 Trosch T, Ströβner J, Völkl R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to for-ging and casting[J]. Mater Lett,2016,164:428.
10 Hinojos A, Mireles J, Reichardt A, et al. Joining of inconel 718 and 316 stainless steel using electron beam melting additive manufactu-ring technology[J]. Mater Des,2016,94:17.
11 Xu F J, Lv Y H, Xu B S, et al. Study on process of rapid prototyping based on pulsed plasma arc welding[J]. Mater Sci Technol,2012,20(3):89(in Chinese).
徐富家, 吕耀辉, 徐滨士,等. 基于脉冲等离子焊接快速成形工艺研究[J]. 材料科学与工艺,2012,20(3):89.
12 Kurz W, Fisher D J. Fundamentals of solidification[M]. Switzerland: Trans Tech Publications,1986.
13 Fu H, Geng X. High rate directional solidification and its application in single crystal superalloys[J]. Sci Technol Adv Mater,2001,2(1):197.
14 Manikandan S G K, Sivakumar D, Rao K P, et al. Microstructural characterization of liquid nitrogen cooled alloy 718 fusion zone[J]. J Mater Process Technol,2014,214(12):3141.
15 Mathiesen R H, Arnberg L, Bleuet P, et al. Crystal fragmentation and columnar-to-equiaxed transitions in Al-Cu studied by synchrotron X-ray video microscopy[J]. Metall Mater Trans A,2006,37(8):2515.
16 Wang H M, Zhang J H, Tang Y J, et al. Rapidly solidified MC carbide morphologies of a laser-glazed single-crystal nickel-base superalloy[J]. Mater Sci Eng A,1992,156(1):109.
17 Bouse G K, Mihalisin J R. 4-Metallurgy of investment cast superalloy components[M]∥Tien J K,Caulfield T.Superall Supercompos Superceram.San Diego:Academic Press,1989:99.
18 OdabaŞi A, Ünlü N, Göller G, et al. A study on laser beam welding (LBW) technique: Effect of heat input on the microstructural evolution of superalloy inconel 718[J]. Metall Mater Trans A,2010,41(9):2357.
[1] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[2] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[3] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[4] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[5] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[6] 刘倩, 卢秉恒. 金属增材制造质量控制及复合制造技术研究现状[J]. 材料导报, 2024, 38(9): 22100064-8.
[7] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[8] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[9] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[10] 刘斌, 索超, 李忠华, 蒯泽宙, 陈彦磊, 唐秀. 选区激光熔化成形铜合金研究进展[J]. 材料导报, 2024, 38(7): 22080129-11.
[11] 龚浩, 程东海, 刘钊泽, 李文杰, 邹鹏远. CFRP/TC4激光连接工艺及接头组织和性能[J]. 材料导报, 2024, 38(7): 22110267-5.
[12] 孙华键, 郭德林, 李如庆, 侯良朋, 杨明辉, 孙金钊, 殷凤仕. 改性MCrAlY涂层的研究进展[J]. 材料导报, 2024, 38(7): 22120155-10.
[13] 凌子涵, 王利卿, 张震, 赵占勇, 白培康. 镁合金电弧增材技术基本工艺及工艺因素影响综述[J]. 材料导报, 2024, 38(7): 22090013-9.
[14] 张明玉, 运新兵, 伏洪旺. BASCA热处理对TC10钛合金组织与断裂韧性的影响[J]. 材料导报, 2024, 38(7): 22080020-6.
[15] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed