Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (14): 96-99    https://doi.org/10.11896/j.issn.1005-023X.2017.014.020
  材料研究 |
高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*
陈超, 陈芙蓉, 解瑞军, 路遥
内蒙古工业大学材料科学与工程学院, 呼和浩特 010051;
Effect of High-energy Shot Peening Treatment on Micro-structure and Properties of 7A52 Aluminum Alloy
CHEN Chao, CHEN Furong, XIE Ruijun, LU Yao
School of Materials Science and Engineering,Inner Mongolia University of Technology, Hohhot 010051;
下载:  全 文 ( PDF ) ( 1636KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着金属表面自纳米化技术的不断发展,金属材料的表面性能得到了明显提升。通过SEM、EBSD、TEM和HRTEM等分析测试手段,对高能喷丸处理后的7A52铝合金表面纳米化机理进行了分析。结果表明,随喷丸时间的延长铝合金表面硬度显著增大,当喷丸时间为50 min时,表面硬度约为270HV,与基体相比提高了近1.5倍。此时铝合金外表面均匀分布着平均晶粒尺寸约为14.16 nm的等轴晶,距表面约60 μm处分布着以小角度晶界为主的微米级亚晶。7A52铝合金表面纳米级晶粒的形成机理主要是:晶粒变形使晶内逐渐形成高浓度位错,位错的缠绕、塞积对基体晶粒进行了初步分割细化,在往复载荷的作用下最终在表面形成了等轴的随机取向分布的纳米级晶粒。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈超
陈芙蓉
解瑞军
路遥
关键词:  7A52铝合金  高能喷丸  位错  大角度晶界  小角度晶界    
Abstract: With the development of surface self-nanocrystallization technology of metallic materials, the metallic surface pro-perties have been enhanced to a certain degree. In this paper, the mechanism of surface nanocrystallization on 7A52 aluminum alloy after high-energy shot peening treatment (HESP) was characterized by SEM, EBSD,TEM and HRTEM. The results show that the microhardness increase with the increase of shot peening time. After 50 min HESP, the surface hardness is about 270HV, which can approximately increase to 1.5 times compared to the base metal; the average grain size is about 14.16 nm; the subsurface layer of 60 μm deep is composed of micrometers sub-grains. The surface layer grain refinement process of 7A52 aluminum alloy involves formation of dislocation pile-up and tangling, which resulted in deformed grains. Finally, nano-scale grains with equiaxed shape and random crystallographic orientations are formed upon the multidirectional repeated loads.
Key words:  7A52 aluminum alloy    high-energy shot peening    dislocation    high-angle boundary    low-angle boundary
出版日期:  2017-07-25      发布日期:  2018-05-04
ZTFLH:  TG176  
基金资助: *国家自然科学基金(50765003)
作者简介:  陈超:男,1990年生,硕士研究生,主要从事铝合金激光焊焊接工艺、铝合金表面纳米化研究 E-mail:929368583@qq.com 陈芙蓉:通讯作者,女,1971年生,教授,博士研究生导师,主要从事焊接结构及其接头表面纳米化研究 E-mail:7075cfr@163.com
引用本文:    
陈超, 陈芙蓉, 解瑞军, 路遥. 高能喷丸处理对7A52铝合金表面微观组织结构及性能的影响*[J]. 《材料导报》期刊社, 2017, 31(14): 96-99.
CHEN Chao, CHEN Furong, XIE Ruijun, LU Yao. Effect of High-energy Shot Peening Treatment on Micro-structure and Properties of 7A52 Aluminum Alloy. Materials Reports, 2017, 31(14): 96-99.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.014.020  或          https://www.mater-rep.com/CN/Y2017/V31/I14/96
1 Huang L, Lu J, Troyon M. Nanomechanical properties of nanostructured titanium prepared by SMAT[J]. Surf Coat Technol,2006,201(201):208.
2 Lin Y, Lu J, Wang L, et al. Surface nanocrystallization by surface mechanical attrition treatment and its effect on structure and properties of plasma nitrided AISI 321 stainless steel[J]. Acta Mater,2006,54(20):5599.
3 Zhou L, He W, Luo S, et al. Laser shock peening induced surface nanocrystallization and martensite transformation in austenitic stainless steel[J]. J Alloys Compd,2016,655:66.
4 Dai K, Villegas J, Shaw L. An analytical model of the surface roughness of an aluminum alloy treated with a surface nanocrystallization and hardening process[J]. Scr Mater,2005,52(4):259.
5 Dai K, Villegas J, Stone Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J]. Acta Mater,2004,52(20):5771.
6 Zhao K, Liu Y, Yao T, et al. Surface nanocrystallization of Ti-45Al-7Nb-0.3W intermetallics induced by surface mechanical grin-ding treatment[J]. Mater Lett,2016,166:59.
7 Ren X D, Huang J J, Zhou W F, et al. Surface nano-crystallization of AZ91D magnesium alloy induced by laser shock processing[J]. Mater Des,2015,86:421.
8 张晓燕. 材料科学基础[M].北京:北京大学出版社,2009.
[1] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[2] 韩赛斌, 胡秀飞, 王英楠, 王子昂, 张晓宇, 彭燕, 葛磊, 徐明升, 徐现刚, 冯志红. 金刚石单晶中的位错及其对器件影响的研究进展[J]. 材料导报, 2024, 38(20): 23100241-14.
[3] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[4] 田根, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 增材制造成形件中位错的研究进展[J]. 材料导报, 2024, 38(1): 22050294-11.
[5] 张隽, 冯瑞成, 姚永军, 杨晟泽, 曹卉, 付蓉, 李海燕. 片层状TiAl-Nb合金中γ/γ界面体系拉伸行为的原子模拟[J]. 材料导报, 2023, 37(6): 21080280-6.
[6] 吴护林, 李忠盛, 金应荣, 贺毅. 弹簧应力松弛反常载荷损失及原因分析[J]. 材料导报, 2023, 37(23): 22090089-6.
[7] 孙海猛, 牛赢, 焦锋, 王壮飞. 刀具前角对超声复合加工成形切屑组织与性能的影响[J]. 材料导报, 2023, 37(17): 22030291-7.
[8] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[9] 翟海民, 欧梦静, 袁花妍, 崔帅, 李文生. 内生块体非晶复合材料的加工硬化行为研究进展[J]. 材料导报, 2022, 36(23): 20100214-9.
[10] 刘成豪, 陈芙蓉. 超声冲击强化7A52铝合金VPPA-MIG焊接接头的疲劳性能[J]. 材料导报, 2022, 36(15): 21030115-5.
[11] 陈今良, 冯中学, 易健宏. CrCoNi中熵合金变形中位错与孪晶协调变形机制[J]. 材料导报, 2022, 36(14): 20090129-6.
[12] 顾洋, 宋帅, 武会宾, 张志慧, 张鹏程. 回火温度对Cr7钢耐CO2腐蚀性能的影响[J]. 材料导报, 2021, 35(18): 18176-18181.
[13] 王睿鑫, 唐宇, 李顺, 白书欣. 高熵合金动态载荷下变形机制的研究进展[J]. 材料导报, 2021, 35(17): 17001-17009.
[14] 王麒, 冯瑞成, 樊礼赫, 邵自豪, 董建勇. 切削深度对单晶γ-TiAl合金亚表面缺陷及残余应力的影响[J]. 材料导报, 2021, 35(14): 14089-14095.
[15] 孙强, 黄苏起, 蔡著文, 党卫东, 吴晓春. 两种热冲压模具用钢的抗拉毛性能[J]. 材料导报, 2021, 35(10): 10152-10157.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed