Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (18): 25-27    https://doi.org/10.11896/j.issn.1005-023X.2017.018.006
  材料研究 |
NiAl-W纳米多孔阵列制备方法研究*
赵志龙1, 高建军1, 韦路锋1, 崔凯1, 侯铁城2
1 西北工业大学机电学院, 西安 710072;
2 西北工业集团公司设计二所, 西安 710043
Investigation on Preparation of Nanoporous Arrays of NiAl-W
ZHAO Zhilong1, GAO Jianjun1, WEI Lufeng1, CUI Kai1, HOU Tiecheng2
1 School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072;
2 Second Design Institution, Northwest Industries Group Co., LTD, Xi’an 710043
下载:  全 文 ( PDF ) ( 1565KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用定向凝固与选择性腐蚀复合工艺,获得NiAl-W纳米多孔阵列。通过定向凝固速率可调节棒状NiAl-W共晶中棒状W相的间距和直径,电化学选择性腐蚀去除W相后,在NiAl基体表面上形成间距和孔径可调的多孔阵列。由于孔径尺度的限制,孔列在电势0.5 V连续腐蚀2~3 h后受到极大的阻力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵志龙
高建军
韦路锋
崔凯
侯铁城
关键词:  棒状共晶  纳米孔列  NiAl-W  定向凝固  选择性腐蚀    
Abstract: The nanoporous arrays on the surface of NiAl-W eutectic alloy were obtained through a combined process of directional solidification and selective dissolution. The spacing and diameter of rod-like tungsten phases in the NiAl-W pseudobinary eutectic both can be tuned through the selection of growth rates during directional solidification. Thus, the spacing and porous diameter of porous array on the surface of NiAl matrix could be also adjusted after removing rod-like W phase through the electrochemical selective dissolution. Because of the limitation of the pore size, the deepening of the depth of etching porous zone has been suffered an enormous hindrance after etching of 2—3 hours at the potential of 0.5 V.
Key words:  rod-like eutectic    nanoporous array    NiAl-W    directional solidification    selective dissolution
               出版日期:  2017-09-25      发布日期:  2018-05-08
ZTFLH:  TB34  
基金资助: 国家自然科学基金(51374173)
作者简介:  赵志龙:1963年生,博士,教授,主要研究方向为微结构制造 E-mail:691502556@qq.com
引用本文:    
赵志龙, 高建军, 韦路锋, 崔凯, 侯铁城. NiAl-W纳米多孔阵列制备方法研究*[J]. 《材料导报》期刊社, 2017, 31(18): 25-27.
ZHAO Zhilong, GAO Jianjun, WEI Lufeng, CUI Kai, HOU Tiecheng. Investigation on Preparation of Nanoporous Arrays of NiAl-W. Materials Reports, 2017, 31(18): 25-27.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.018.006  或          http://www.mater-rep.com/CN/Y2017/V31/I18/25
1 Li J H, Wang X D, Ludwig T H, et al. Modification of eutectic Si in Al-Si alloys with Eu addition [J]. Acta Mater, 2015,84:153.
2 Milenkovic S, Schneider A, Frommeyer G. Constitutional and microstructural investigation of the pseudobinary NiAl-W system [J]. Intermetallics, 2011,19:342.
3 Bei H, George E P. Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy[J]. Acta Mater, 2005,53:69.
4 Akamatsu S, Plapp M. Eutectic and peritectic solidification patterns [J]. Current Opinion Solid State Mater Sci, 2016,20:46.5 Kurz W, Fisher D J. Fundamentals of solidification [M]. 4th edition. Switzerland: Trans Tech Publications, 1998.
6 Jackson K A, Hunt J D. Lamellar and rod eutectic growth [J]. Metall Soc AIME, 1966,236:1129.
7 Kolodziejak K, Gajc M, Sar J, et al. Synthesis and structural study of a self-organized MnTiO3-TiO2 eutectic [J]. J Alloys Compd, 2016,659:152.
8 Perrut M, Rousseau S B, Faivre G, et al. Dynamic instabilities of rod-like eutectic growth patterns: A real-time study [J]. Acta Mater, 2013,61:6802.
9 Hassel A W, Rodriguez B B, Smith A J, et al. Preparation and specific properties of single crystalline metallic nanowires [J]. Phys Status Solidi, 2010,B247:2380.
10Larrea A, Orera V M. Porous crystal structures obtained from directionally solidified eutectic precursors [J]. J Cryst Growth, 2007,300:387.
11Laguna-Bercero M A, Larrea A, et al. Structured porous Ni- and Co-YSZ cermets fabricated from directionally solidified eutectic composites [J]. J Eur Ceram Soc, 2005,25:1455.
12Bello B, Schneider A, Hassel A W. Preparation of ultramicroelectrode array of gold hemispheres on nanostructured NiAl-Re[J]. J Electrochem Soc, 2006,153(1):C33.
13Frankel D, Milenkovic S, Smith A J, et al. Nanostructuring of NiAl(Mo eutectic alloys by selective phase dissolution [J]. Electrochim Acta, 2009,54:6015.
14Ren Haiguo, Wang Wenjia, Gao Jianjun, et al. Directional solidification microstructure control of NiAl-1.5at%W eutectic alloy and morphology of W meso-nanowires[J]. Rare Metal Mater Eng, 2016,45(1):222(in Chinese).
任海果,王文佳,高建军,等. NiAl-1.5at%W共晶合金定向凝固组织控制与W介纳米丝形貌[J]. 稀有金属材料与工程, 2016,45(1):222.
15Sun Yan, Liu Ruiyan, Zhang Junshan, et al. Progress in NiAl-based intermetallic compound research[J]. Mater Rev, 2003,17(7):10(in Chinese).
孙岩,刘瑞岩,张俊善,等. NiAl基金属间化合物的研究进展[J]. 材料导报,2003,17(7):10.
[1] 杨金祥, 石爽, 姜大川, 李旭, 李鹏廷, 谭毅, 姚玉杰, 池明, 张润德, 张建帅. 多晶硅定向凝固过程中温度对凝固速率的影响[J]. 材料导报, 2019, 33(z1): 28-32.
[2] 卢百平, 崔春娟, 田露露, 问亚岗, 王佩. 布里奇曼定向凝固Ni-12%Si过共晶的弹性模量与断裂韧性[J]. 材料导报, 2019, 33(8): 1383-1388.
[3] 陈祥楷, 李向明. 探究二元共晶的生长过程:实时原位观察、数值模拟与解析解研究[J]. 材料导报, 2019, 33(5): 871-880.
[4] 朱靖, 李勇, 王莹, 李焕, 赵亚茹. 不同定向凝固速率下Cu-2.5%Cr合金中带状组织的形成机理[J]. 材料导报, 2019, 33(2): 309-313.
[5] 魏岑,李向明. 一种不稳定的共晶生长方式:倾斜共晶生长的研究进展[J]. 材料导报, 2019, 33(15): 2532-2537.
[6] 李勇, 朱靖, 王莹, 李焕, 赵亚茹. 定向凝固Cu-0.33Cr-0.1Ti亚共晶合金中带状组织的形成机理[J]. 《材料导报》期刊社, 2018, 32(4): 602-605.
[7] 霍苗, 刘林, 黄太文, 杨文超, 李亚峰, 王晓娟, 张军, 傅恒志. 镍基单晶高温合金小角度晶界的形成机制、影响因素与控制措施[J]. 材料导报, 2018, 32(19): 3394-3404.
[8] 苏文佳, 牛文清, 齐小方, 李琛, 王军锋. 定向凝固法多晶硅杂质控制数值模拟概述[J]. 《材料导报》期刊社, 2018, 32(11): 1795-1805.
[9] 郭廷彪,李 琦,王 晨,张 锋, 丁雨田,贾 智,唐兴昌. 低温等通道转角挤压中定向凝固纯铜的组织及性能演变[J]. 《材料导报》期刊社, 2018, 32(10): 1650-1654.
[10] 黄哲远, 王文先, 闫志峰, 张婷婷. 定向凝固多晶硅在微纳尺度下的力学性能研究*[J]. 《材料导报》期刊社, 2017, 31(14): 11-15.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed