Please wait a minute...
材料导报  2018, Vol. 32 Issue (19): 3405-3413    https://doi.org/10.11896/j.issn.1005-023X.2018.19.015
  金属与金属基复合材料 |
微量硼添加对镁合金组织和性能影响的研究进展
张烁1,宋江凤1,潘复生1,2,刘强1,杨丽1
1 重庆大学国家镁合金材料工程技术研究中心,重庆 400044;
2 重庆市科学技术研究院,重庆 401123
Research Progress of Micro Amount of Boron Addition on Microstructure and Properties of Magnesium Alloy
ZHANG Shuo1, SONG Jiangfeng1, PAN Fusheng1,2, LIU Qiang1, YANG Li1
1 National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044;
2 Chongqing Academy of Science and Technology, Chongqing 401123
下载:  全 文 ( PDF ) ( 4210KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 在21世纪的今天,由于石油、煤炭等资源的过度开发与使用,人们对节能减排的重视程度越来越高,轻质结构材料也因此受到越来越多的关注。镁合金作为最轻的金属结构材料,具有良好的阻尼减震特性、电磁屏蔽性以及比强度、比刚度高等优点,在航空航天、3C 产品、汽车等领域表现出了极大的应用潜力。但是镁合金的综合力学性能和耐腐蚀性能还有待进一步提高。晶粒细化可以同时提高金属的强度和塑性,因此开发出一种高效、低成本的晶粒细化剂是改善镁合金综合性能的重要途径。
现在常用的镁合金晶粒细化剂通常有Zr、Si、稀土类元素以及含碳变质剂等。其中Zr与Al共存会恶化其晶粒细化作用,因此Mg-Al系的合金不能采用Zr作为晶粒细化剂,Zr的应用极为有限;Si的大量使用则会使Mg合金中生成粗大的Mg2Si相,恶化其力学性能,即使少量加入,也会大大降低镁合金的耐腐蚀性能;稀土通常开采成本较高,密度较大,不仅大大增加了使用成本,而且会削弱镁合金的轻量化优势,因此阻碍了其应用推广;含碳变质剂通常对大多数Mg-Al系合金有着较好的细化晶粒的效果,但是诸如CCl4、C2Cl6等会造成一系列环境问题,而且碳的引入会加剧镁合金的腐蚀速率。B作为轻元素,其本身具有密度小、熔点高以及耐腐蚀性强等特点,早在铝合金中就常用作孕育剂和晶粒细化剂。近些年来,有许多研究者对硼化物进行深入的研究,发现B可以与绝大多数金属形成化合物,且晶格类型大多为密排六方结构,且与镁合金的亲和度较强,有潜力成为镁合金中的异质形核剂并有效细化其晶粒。不同含B合金的添加形式对镁合金组织和性能的影响不尽相同,据笔者所知,目前并未有人总结过微量B的添加对镁合金组织和性能的影响及其机理。
本文对不同B的添加形式对镁合金组织和性能的影响进行了全面系统的总结和深入探讨,分析了B元素在镁合金中的晶粒细化机制和强韧化效果,最后对B在镁合金中的合金化改性作用前景进行了探讨和展望。认为B是一种在镁合金的开发中有较大研究和应用价值的元素,尤其是在Mg-Al系合金中表现出优异的晶粒细化作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张烁
宋江凤
潘复生
刘强
杨丽
关键词:    镁合金  Al-B  Al-Ti-B  稀土元素  晶粒细化    
Abstract: In twenty-first century, due to the over exploitation and utilization of resources such as oil and coal, people pay more and more attention to energy saving and emission reduction. Therefore, lightweight structural materials are attracting more and more attention. Magnesium alloy is the lightest structural metallic material with good damping properties, electromagnetic shielding, and high specific strength and stiffness. It shows great potential to be used in aerospace, 3C (computer, communication, consumer electronics) products, automotive and other fields. However, the comprehensive properties and corrosion properties of Mg alloys need to be further improved. Since grain refinement can enhance the strength and plasticity simultaneously, it is of great importance to develop an effective and low-cost grain refiner to further improve the comprehensive properties of magnesium alloys.
The commonly used grain refiners for magnesium alloys are usually Zr, Si, rare-earth elements and carbon containing modifiers. The presence of Al highly deteriorates the grain refinement of Zr. Thus, the grain refined of Zr is limited to magnesium alloys contains no Al. The addition of a large amount of Si will generate coarse Mg2Si phase in the alloy, which reduce the mechanical properties, only a small amount of Si addition will reduce the corrosion resistance of magnesium alloy greatly. The high cost and high density of rare earth limited its application in magnesium alloy. Carbon inoculation usually has good grain refinement on most of the Mg-Al alloys, but some carbon compounds cause a series of environmental problems such as CCl4, C2Cl6 etc. The introduction of carbon will increase the corrosion rate of magnesium alloy. B is a light element with low density, high melting point and high corrosion resis-tance. It is usually used as inoculant and grain refiner in aluminum alloy. In recent years, many researchers have done in-depth research on B compounds, it is found that B will form compounds with most metals, and most of the compounds has close-packed hexagonal structure, which have strong affinity with magnesium alloys. So, B has a great potential to act as heterogeneous nucleation site and refine the grains of Mg alloys. However, up to the author’s best knowledge, no one has summarized the influence of B additions with different type on the microstructure and properties of magnesium alloys and the corresponding mechanism.
In this paper, the experimental study on the addition of trace B in magnesium alloy structural materials has been summarized. The mechanism of grain refinement and strengthening of B in several Mg alloys are analyzed. Besides, the prospect of application of B in magnesium alloy is presented. It is considered that B is an element with great research and application value in the development of magnesium alloy, especially in the Al containing alloys.
Key words:  boron    magnesium alloys    Al-B    Al-Ti-B    rare earth    grain refinement
               出版日期:  2018-10-10      发布日期:  2018-10-18
ZTFLH:  TG292  
基金资助: 国家重点研发计划项目资助(2016YFB0301100)
作者简介:  张烁:男,1992年生,硕士研究生,研究方向为铸造镁合金 E-mail:shuosurezs@163.com ;宋江凤:通信作者,1987年生,讲师,主要从事镁合金铸造缺陷的研究 E-mail:jiangfeng.song@cqu.edu.cn; 潘复生:1962年生,教授,主要从事镁及镁合金相关领域的研究 E-mail:fspan@cqu.edu.cn;
引用本文:    
张烁, 宋江凤, 潘复生, 刘强, 杨丽. 微量硼添加对镁合金组织和性能影响的研究进展[J]. 材料导报, 2018, 32(19): 3405-3413.
ZHANG Shuo, SONG Jiangfeng, PAN Fusheng, LIU Qiang, YANG Li. Research Progress of Micro Amount of Boron Addition on Microstructure and Properties of Magnesium Alloy. Materials Reports, 2018, 32(19): 3405-3413.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.19.015  或          http://www.mater-rep.com/CN/Y2018/V32/I19/3405
1 Luo A A. Magnesium casting technology for structural applications[J].Journal of Magnesium & Alloys,2013,1(1):2.
2 Chang H W, Qiu D, Taylor J A, et al. The role of Al2Y in grain refinement in Mg-Al-Y alloy system[J].Journal of Magnesium & Alloys,2013,1(1):115.
3 Hu Hongjun, Zhang D F, Yang M B, et al. Grain refinement in AZ31 magnesium alloy rod fabricated by extrusion-shearing severe plastic deformation process[J].Transactions of Nonferrous Metals Society of China,2011,21(2):243.
4 Lorimer G W, Robson J. Review on research and development of magnesium alloys[J].Acta Metallurgica Sinica,2008,21(5):313.
5 Ding W J, Jin L, Wu W X, et al. Texture and texture optimization of wrought Mg alloy[J].Chinese Journal of Nonferrous Metals,2011,21(10):2371(in Chinese).
丁文江,靳丽,吴文祥,等.变形镁合金中的织构及其优化设计[J].中国有色金属学报,2011,21(10):2371.
6 Wu Guohua, Xiao H, Zhou H Z, et al. Anisotropy of warm-tempe-rature tensile properties of extruded AZ31 magnesium alloy[J].Chinese Journal of Nonferrous Metals,2017,27(1):57(in Chinese).
吴国华,肖寒,周慧子,等.挤压态AZ31镁合金温热拉伸性能的各向异性[J].中国有色金属学报,2017,27(1):57.
7 Rokhlin L L. Structure and properties of alloys of the Mg-REM system[J].Metal Science & Heat Treatment,2006,48(11-12):487.
8 Liu H, Tang D, Hu S, et al. Effects of rare earth y on the microstructure and mechanical properties of AZ31 magnesium alloy sheets[J].Rare Metal Materials and Engineering,2013,42(7):1372.
9 Trivedi P, Nune K C, Misra R D K. Degradation behaviour of magnesium-rare earth biomedical alloys[J].Materials Technology,2016,31(12):726.
10 郑学家.硼化合物手册[M].北京:化学工业出版社,2010.
11 王顺兴.金属热处理原理与工艺[M].哈尔滨:哈尔滨工业大学出版社,2009.
12 郑学家.金属硼化物与含硼合金[M].北京:化学工业出版社,2012.
13 Fakhraei O, Emamy M, Farhangi H. The effect of Al-5Ti-1B grain refiner on the structure and tensile properties of Al-20%Mg alloy[J].Materials Science and Engineering A,2013,560(2):148.
14 Kumar G S V, Murty B S, Chakraborty M. Grain refinement response of LM25 alloy towards Al-Ti-C and Al-Ti-B grain refiners[J].Journal of Alloys and Compounds,2009,472(1-2):112.
15 Birol Y. Performance of AlTi5B1, AlTi3B3 and AlB3 master alloys in refining grain structure of aluminium foundry alloys[J].Materials Science and Technology,2013,28(4):481.
16 郑学家,于金芝,于德江.新型含硼材料[M].北京:化学工业出版社,2010.
17 Amerioon A, Emamy M, Ashuri G. Investigation the effect of Al-5Ti-1B grain refiner and T6 heat treatment on tensile properties of Al-8%Mg[J].Procedia Materials Science,2015,11(2):32.
18 Xu X L. Study on phase formation and reaction kinetics of Al-B system[D].Shenyang:Northeastern University,2010(in Chinese).
徐晓雷.Al-B体系成相及反应动力学研究[D].沈阳:东北大学,2010.
19 马图哈.非铁合金的结构与性能[M].北京:科学出版社,1999.
20 Nishino N, Kawahara H, Shimizu Y, et al. Grain refinement of magnesium casting alloys by boron addition[M]∥Magnesium Alloys and their Applications. Wiley-VCH Verlag GmbH & Co. KGaA,2006.
21 Graulis S, Dakevi A, Merkys A, et al. Crystallography open database (COD): An open-access collection of crystal structures and platform for world-wide collaboration[J].Nucleic Acids Research,2012,40:D420.
22 Carlson O N. The Al-B (aluminum-boron) system[J].Journal of Phase Equilibria,1990,11(6):560.
23 Zhang A S, Fang Z Z, Yan M M. Effects of boron on microstructure and property of AZ91 magnesium alloy[J].Hot Working Technology,2006,35(24):28(in Chinese).
章爱生,方占召,严明明.硼对AZ91镁合金组织及性能的影响[J].热加工工艺,2006,35(24):28.
24 Suresh M, Srinivasan A, Ravi K R, et al. Influence of boron addition on the grain refinement and mechanical properties of AZ91 Mg alloy[J].Materials Science & Engineering A,2009,525(1-2):207.
25 Chen J Y, Guan S K, Shi G X, et al. Effects of B on microstructure and properties of Mg-7Al-0.4Zn-0.2Mn alloy[J].Special Casting & Nonferrous Alloys,2005(8):454(in Chinese).
陈晶阳,关绍康,石广新,等.硼对Mg-7A1-0.4Zn-0.2Mn合金组织及性能的影响[J].特种铸造及有色合金,2005(8):454.
26 Arrabal R, Pardo A, Merino M C, et al. Effect of Nd on the corrosion behaviour of AM50 and AZ91D magnesium alloys in 3.5wt.% NaCl solution[J].Corrosion Science,2012,55(2):301.
27 Danaie M, Asmussen R M, Jakupi P, et al. The role of aluminum distribution on the local corrosion resistance of the microstructure in a sand-cast AM50 alloy[J].Corrosion Science,2013,77(12):151.
28 Song G L, Atrens A. Corrosion mechanisms of magnesium alloys[J].Advanced Engineering Materials,1999,1(1):11.
29 Chen J Y, Guan S K, Wang J Q, et al. Effect of boron on corrosion resistance of Mg-7Al-0.4Zn-0.2Mn alloy[J].Materials Protection,2005,38(10):5(in Chinese).
陈晶阳,关绍康,王建强,等.微量硼对镁合金耐腐蚀性能的影响[J].材料保护,2005,38(10):5.
30 Liu J B. The impact of B content on the corrosion resistance and microstructure of AZ91 magnesium alloy[J].Value Engineering,2012,31(9):23(in Chinese).
刘建勃.硼对AZ91镁合金显微组织和腐蚀性能的影响[J].价值工程,2012,31(9):23.
31 Wang X, Liu Z, Dai W, et al. On the understanding of aluminum grain refinement by Al-Ti-B type master alloys[J].Metallurgical and Materials Transactions B,2015,46(4):1620.
32 Zhang L, Jiang H, Zhao J, et al. A new understanding toward effect of solute Ti on grain refinement of aluminum by Al-Ti-B master alloy: Kinetic behaviors of TiB2 particles and effect of solute Ti[J].Acta Metallurgica Sinica,2017,53(9):1091.
33 Nakama Y, Ohtani H, Hasebe M. Thermodynamic analysis of the Nb-Ti-B ternary phase diagram[J].Materials Transactions,2009,50(5):984.
34 Abdallah E, Ravindran C, Murty B S. Effect of Al-Ti-B based master alloys on grain refinement and hot tearing susceptibility of AZ91E magnesium alloy[J].Materials Science Forum,2011,690:351.
35 Zhang M X, Kelly P M, Easton M A, et al. Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model[J].Acta Materialia,2005,53(5):1427.
36 Kelly P M, Ren H P, Qiu D, et al. Identifying close-packed planes in complex crystal structures[J].Acta Materialia,2010,58(8):3091.
37 Wang Y, Zeng X, Ding W. Effect of Al-4Ti-5B master alloy on the grain refinement of AZ31 magnesium alloy[J].Scripta Materialia,2006,54(2):269.
38 Wang Y X. Study on microstructure and mechanical properties of Mg-8Zn-4A1-0.3Mn-x(Y) magnesium alloys[D].Zhengzhou: Zhengzhou University,2003(in Chinese).
王迎新.Mg-8Zn-4Al-0.3Mn-x(Y)合金显微组织及力学性能的研究[D].郑州:郑州大学,2003.
39 Li D S, Cheng X N, Li D. Effect of addition Ti and B on microstructure and mechanical properties of AM50 magtesion alloy[J].Mate-rials for Mechanical Engineering,2006,30(11):45(in Chinese).
李冬升,程晓农,李丹.微量钛、硼对AM50镁合金组织和性能的影响[J].机械工程材料,2006,30(11):45.
40 Ma X L, Wang X, Li X L, et al. Effect of Al5Ti1B master alloy on microstructures and properties of AZ61 alloys[J].Chinese Journal of Nonferrous Metals,2010,20(s2):397.
41 Chen J Y. Effect of modification on microstructure and properties of AZ70 deformed magnesium alloy[D].Zhengzhou:Zhengzhou University,2005(in Chinese).
陈晶阳.变质处理对AZ70变形镁合金组织及性能影响的研究[D].郑州:郑州大学,2005.
42 Vlasceanu M, Sin S L, Elsayed A, et al. Effect of Al-5Ti-1B on grain refinement, dendrite coherency and porosity of AZ91E magnesium alloy[J].Cast Metals,2014,28(1):39.
43 Chen T J, Wang R Q, Ma Y, et al. Grain refinement of AZ91D magnesium alloy by Al-Ti-B master alloy and its effect on mechanical properties[J].Materials & Design,2012,34(1):637.
44 Zhang Q, Liu B, Niu Z, et al. Grain refinement and mechanical properties of Mg-5Li-3Al alloy inoculated by Al-5Ti-1B master alloy[J].Materials Science & Engineering A,2014,619:152.
45 Chen J Y, Guan S K, Lin D W, et al. Effects of Al3Ti4B master alloy on microstructure and properties of Mg-7Al-0.4Zn-0.2Mn alloys[J].Chinese Journal of Nonferrous Metals,2005,15(3):478(in Chinese).
陈晶阳,关绍康,林敦文,等.Al3Ti4B中间合金对Mg-7Al-0.4Zn-0.2Mn合金显微组织和性能的影响[J].中国有色金属学报,2005,15(3):478.
46 Chen Q, Tang A, Xu T, et al. High performance cast magne-sium rare-earth alloys: Retrospect and prospect[J].Materials Review A:Review Papers,2016,30(9):1(in Chinese).
陈巧旺,汤爱涛,许婷熠,等.高性能铸造稀土镁合金的发展[J].材料导报:综述篇,2016,30(9):1.
47 Qi X H. Effect of Ca, Si and B, RE joint additions on microstructures and mechanical properties of AM60 magnesium alloy[D].Zhengzhou: Zhengzhou University,2004(in Chinese).
齐新华.复合微合金化(Ca+Si;B+RE)对AM60合金组织和性能的影响[D].郑州:郑州大学,2004.
48 Meng J, Yang Q, Tian Z, et al. Microstructures and tensile properties of Mg-4Al-4La-0.4Mn-xB (x=0, 0.01, 0.02, 0.03) alloy[J].Journal of Alloys & Compounds,2013,572(12):129.
49 Zhao D G, Tian C W, Liu Y T, et al. Effects of Nd and B combined addition on microstructure and mechanical properties of AZ91 magnesium alloy[J].Shandong Science,2011,24(4):23(in Chinese).
赵德刚,田长文,刘运腾,等.复合添加Nd与B对AZ91镁合金组织和力学性能的影响[J].山东科学,2011,24(4):23.
50 Yang K, Zhang J, Zong X, et al. Effect of microalloying with boron on the microstructure and mechanical properties of Mg-Zn-Y-Mn alloy[J].Materials Science & Engineering A,2016,669: 340.
51 Zhang L, Zhou W, Hu P, et al. Effect of Al-3Nb-1B master alloy on the grain refinement of AZ91D magnesium alloy[J].Metallurgical and Materials Transactions B,2016,47(3):1999.
[1] 刘印, 王昌, 于振涛, 盖晋阳, 曾德鹏. 医用镁合金的力学性能研究进展[J]. 材料导报, 2019, 33(z1): 288-292.
[2] 龙亮, 刘炳刚, 罗昊, 鲜亚疆. 碳化硼的研究进展[J]. 材料导报, 2019, 33(z1): 184-190.
[3] 赵曦, 于振涛, 郑继明, 余森, 王昌. 合金元素影响镁合金弹性性能的第一性原理计算研究[J]. 材料导报, 2019, 33(z1): 293-296.
[4] 彭鹏, 汤爱涛, 佘加, 周世博, 潘复生. 超细晶镁合金的研究现状及展望[J]. 材料导报, 2019, 33(9): 1526-1534.
[5] 杨万利, 代丽娜, 樊振宁, 张瀚晨, 史忠旗. PAS烧结SiC/h-BN复相陶瓷的韧性表征[J]. 材料导报, 2019, 33(8): 1272-1275.
[6] 王杏娟, 靳贺斌, 朱立光, 朴占龙, 王博, 曲硕. B2O3对CaO-Al2O3-SiO2基连铸保护渣性能及结构的影响[J]. 材料导报, 2019, 33(8): 1395-1400.
[7] 毕凤琴, 周帮, 王勇. 合金化对不锈钢耐蚀性能影响的研究进展[J]. 材料导报, 2019, 33(7): 1206-1214.
[8] 李响, 毛萍莉, 王峰, 王志, 刘正, 周乐. 长周期有序堆垛相(LPSO)的研究现状及在镁合金中的作用[J]. 材料导报, 2019, 33(7): 1182-1189.
[9] 宋雨来, 付洪德, 王震, 杨鹏聪. 镁合金的应力腐蚀开裂:机理、影响因素、防护技术[J]. 材料导报, 2019, 33(5): 834-840.
[10] 姚天宇, 杨海燕, 周素洪, 叶兵, 蒋海燕. 镁合金表面电沉积铝工艺的研究进展[J]. 材料导报, 2019, 33(3): 470-478.
[11] 莫晓华, 蒋卫卿. Fe、Co和Ni掺杂LiBH4放氢性能的第一性原理研究[J]. 材料导报, 2019, 33(2): 225-229.
[12] 种小川,肖国庆,丁冬海,白冰. 碳化硼粉体合成方法的研究进展[J]. 材料导报, 2019, 33(15): 2524-2531.
[13] 张娜,程仁菊,董含武,刘文君,詹俊,蒋斌,潘复生. Sr在耐热镁合金中的应用及研究进展[J]. 材料导报, 2019, 33(15): 2565-2571.
[14] 郑博, 赵丽, 董仕节, 胡心彬. 镁铝金属间化合物的第一性原理研究[J]. 材料导报, 2019, 33(14): 2426-2430.
[15] 王春明,杨牧南,黄建辉,刘位江,梁彤祥. 镁合金表面自纳米化研究进展及现状[J]. 材料导报, 2019, 33(13): 2260-2265.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed