Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 112-121    https://doi.org/10.11896/j.issn.1005-023X.2017.019.016
  新材料新技术 |
金属有机骨架材料在气体吸附与分离中的应用研究进展*
周玲玲, 汤立红, 宁平, 李凯, 包双友, 朱婷婷, 金旭, 张秀英
昆明理工大学环境科学与工程学院,昆明650500
Progress in Gas Adsorption and Separation Application of Metal-Organic Framework Materials
ZHOU Lingling, TANG Lihong, NING Ping, LI Kai, BAO Shuangyou, ZHU Tingting, JIN Xu, ZHANG Xiuying
Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500
下载:  全 文 ( PDF ) ( 1791KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机骨架材料(MOFs)因具有超高比表面积、较大的孔隙率、多样化且可调的孔道结构及相对温和的制备条件等优势,目前已成为化学和材料等学科的研究热点之一。概述了MOFs材料的制备方法及其用于气体(含碳、含氮及含硫)吸附与分离方面的研究进展,并对其在该方面今后的发展趋势和应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周玲玲
汤立红
宁平
李凯
包双友
朱婷婷
金旭
张秀英
关键词:  金属有机骨架材料  大气污染  吸附  分离    
Abstract: The metal-organic framework materials have become one of the hot spots in the fields of chemistry and materials because of its good performances, such as high specific surface areas,large porosity, diversified and adjustable pore structure and relatively mild preparation conditions. This paper summarizes the preparation methods of MOFs and its application in the adsorption and separation of gases (carbon, nitrogen and sulfur). Finally, the development trend and application prospects of metal-organic frameworks are discussed.
Key words:  metal-organic frameworks (MOFs)    air pollution    adsorption    separation
               出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TB33  
  X511  
基金资助: *国家自然科学基金(21367016;51104073;51408282);云南省教育厅科学研究基金(2015J028;2015Z044)
作者简介:  周玲玲:女,1994年生,硕士研究生,研究方向为金属有机骨架材料对大气中污染物的吸附与分离 E-mail:1181758880@qq.com 汤立红:通讯作者,男,1973年生,博士,研究方向为金属有机骨架材料对大气中污染物的吸附与分离 E-mail:luckyman@163.com
引用本文:    
周玲玲, 汤立红, 宁平, 李凯, 包双友, 朱婷婷, 金旭, 张秀英. 金属有机骨架材料在气体吸附与分离中的应用研究进展*[J]. 《材料导报》期刊社, 2017, 31(19): 112-121.
ZHOU Lingling, TANG Lihong, NING Ping, LI Kai, BAO Shuangyou, ZHU Tingting, JIN Xu, ZHANG Xiuying. Progress in Gas Adsorption and Separation Application of Metal-Organic Framework Materials. Materials Reports, 2017, 31(19): 112-121.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.016  或          http://www.mater-rep.com/CN/Y2017/V31/I19/112
1 Samimi A, Zarinabadi S. Reduction of greenhouse gases emission and effect on environment[J]. Australian J Basic Appl Sci,2012, 8(12):1011.
2 Zambrano M. Energy efficiency and greenhouse effect gas reduction[C]//SPE Latin American and Caribbean Petroleum Engineering Conference. Lima,2015.
3 Wang W, Wang T. On acid rain formation in China[J]. Atmosphe-ric Environment,1996,30(23):4091.
4 Wenxing W. Study on the origin of acid rain formation in China[J]. China Environ Sci,1994,14(5):323.
5 Khan F I, Ghoshal A K. Removal of volatile organic compounds from polluted air[J]. J Loss Prevention in the Process Industries,2000, 13(6):527.
6 Dunn R F, El-Halwagi M M. Optimal design of multicomponent VOC condensation systems[J]. J Hazard Mater,1994,38(1):187.
7 Rand B. Vapor degreasing with solvent distillation and condensation recovery: US,3375177[P]. 1968-03-26.
8 Dunn R F, El-Halwagi M M. Selection of optimal VOC-condensation systems[J]. Waste Management,1994,14(2):103.
9 Zhao T, Sha F, Xiao J, et al. Absorption, desorption and spectroscopic investigation of sulfur dioxide in the binary system ethylene glycol + dimethyl sulfoxide[J]. Fluid Phase Equilibria,2015,405:7.
10 Cui G, Zhang F, Zhou X, et al. Acylamido-based anion-functiona-lized ionic liquids for efficient SO2 capture through multiple-site inte-ractions[J]. ACS Sustainable Chem Eng,2015,3(9):2264.
11 Mondal A, Balasubramanian S. Understanding SO2 capture by ionic liquids[J]. J Phys Chem B,2016,120(19):4457.
12 Li X, Liu X, Jiang Y, et al. Solubilities and thermodynamic properties of carbon dioxide in some biobased solvents[J].J Chen Eng Data,2016,61(9): 3355.
13 Heymes F, Manno-Demoustier P, Charbit F, et al. A new efficient absorption liquid to treat exhaust air loaded with toluene[J].Chem Eng J,2006,115(3):225.
14 Carlowitz O, Ruskamp B, Neese O, et al. Method for the treatment of exhaust gases containing organosilicon components or accompanying substances, and apparatus therefor: US, US8105562[P].2012.
15 Popp D. International innovation and diffusion of air pollution control technologies: The effects of NOx and SO2 regulation in the US,Japan, and Germany[J]. J Environ Econom Manage,2006,51(1):46.
16 Bereketidou O A, Charisiou N D, Goula M A. Simultaneous removal of NOx and SO2 from combustion flue gases using supported copper oxide catalysts[J]. Globalnest Int J,2012,14(2):166.
17 De Nevers N. Air pollution control engineering[M]. United States: Waveland Press,2010.
18 Kotoh K. Hydrogen isotope separation by gas adsorption processes[J]. Purazuma, Kaku Yugo Gakkai-Shi,2016,92(1):15.
19 Ilavsky' J, Barloková D, Munka K. Antimony removal from water by adsorption to iron-based sorption materials[J]. Water Air Soil Pollut,2015,226(1):2238.
20 Clarkson C R, Solano N, Bustin R M, et al. Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion[J]. Fuel,2013,103:606.
21 Baur G B, Yuranov I, Renken A, et al. Activated carbon fibers for efficient VOC removal from diluted streams: The role of surface morphology[J]. Adsorption,2015,21(6):479.
22 Wei X U, Liu J, Sun K. Application progresses in the treatment of volatile organic compounds by adsorption on activated carbon[J]. Chem Ind Eng Progress,2016,35(4):1223.
23 Tong X, Liu Z, Chen X Q, et al. Analysis and pollution sources speculations of toxic gases in a secondary fiber paper mill[J]. J Environ Sci Health A Tox Hazard Subst Environ Eng,2016,15(13):1.
24 Meng X, Huang H, Shi L. Reactive mechanism and regeneration performance of NiZnO/Al2O3-diatomite adsorbent by reactiveadsorption desulfurization[J]. Ind Eng Chem Res,2013,52(18):6092.
25 Knoblauch K, Richter E, Jüntgen H. Application of active coke in processes of SO2-and NOx-removal from flue gases[J]. Fuel, 1981,60(9):832.
26 Sethupathi S, Bashir M J K, Akbar Z A, et al. Biomass-based palm shell activated carbon and palm shell carbon molecular sieve as gas separation adsorbents[J]. Waste Manage Res J Int Solid Wastes Public Cleansing Association Iswa,2015,33(4):303.
27 Gordon B R, Kelsey S F, Dau P C, et al. Long-term effects of low-density lipoprotein apheresis using an automated dextran sulfatecellulose adsorption system[J]. Am J Cardiol,1998,81(4):407.
28 Kitis M, Karanfil T, Wigton A, et al. Probing reactivity of dissolved organic matter for disinfection by-product formation using-XAD-8 resin adsorption and ultrafiltration fractionation[J]. Water Res,2002,36(15):3834.
29 Otten W, Gail E, Frey T. Uses of hydrophobic zeolites in adsorption technology. properties, process optimization, and application[J]. Chem Inform,2015,24(7):133.
30 Zhao Z, Cui X, Ma J, et al. Adsorption of carbon dioxide on alkali-modified zeolite 13X adsorbents[J]. Int J Greenhouse Gas Control, 2007,1(3):355.
31 Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations[J]. Chem Rev,2012,112(2):869.
32 Rowsell J L C, Spencer E C, Eckert J, et al. Gas adsorption sites in a large-pore metal-organic framework[J]. Science,2005,309(5739): 1350.
33 Nandasiri M I, Jambovane S R, Mcgrail B P, et al. Adsorption, separation, and catalytic properties of densified metal-organic frameworks[J]. Coordination Chem Rev,2016,311:38.
34 Li J R, Ma Y, McCarthy M C, et al. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks[J]. Coordination Chem Rev,2011,255(15):1791.
35 Couck S, Denayer J F M, Baron G V, et al. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4[J]. J Am Chem Soc,2009,131(18):6326.
36 Watanabe T, Sholl D S. Accelerating applications of metal-organic frameworks for gas adsorption and separation by computational screening of materials[J]. Langmuir,2012,28(40):14114.
37 Sun W, Lin L C, Peng X, et al. Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases[J]. AIChE J,2014,60(6):2314.
38 Kitagawa S. Metal-organic frameworks (MOFs)[J]. Chem Soc Rev,2014,43(16):5415.
39 Yu J, Xie L H, Li J R, et al. CO2 capture and separations using MOFs: computational and experimental studies[J]. Chem Rev, DOI:10.1021/acs.chemrev.6b00626.
40 Bastin L, Bárcia P S, Hurtado E J, et al. A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption[J]. J Phys Chem C,2008,112(5):1575.
41 Ramsahye N A, Gao J, Jobic H, et al. Adsorption and diffusion of light hydrocatbons in UiO-66(Zr): A combination of experimental and modeling tools[J].J Phys Chem C,2014,118(47):27470.
42 Sumida K, Rogow D L, Mason J A, et al. Carbon dioxide capture in metal-organic frameworks[J]. Chem Rev,2011,112(2):724.
43 Choi S, Watanabe T, Bae T H, et al. Modification of the Mg/DOBDC MOF with amines to enhance CO2 adsorption from ultradilute gases[J]. J Phys Chem Lett,2012,3(9):1136.
44 Salles F, Ghoufi A, Maurin G, et al. Molecular dynamics simulations of breathing MOFs: Structural transformations of MIL-53(Cr) upon thermal activation and CO2 adsorption[J]. Angewandte Chem,2008,120(44):8615.
45 Valenzano L, Civalleri B, Chavan S, et al. Computational and experimental studies on the adsorption of CO, N2, and CO2 on Mg-MOF-74[J]. J Phys Chem C,2010,114(25):11185.
46 Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture[J]. Cryst Growth Des,2010,10(7): 2839.
47 Hamon L, Llewellyn P L, Devic T, et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF[J]. J Am Chem Soc,2009,131(47):17490.
48 Keskin S, Sholl D S. Assessment of a metal-organic framework membrane for gas separations using atomically detailed calculations: CO2, CH4, N2, H2 mixtures in MOF-5[J]. Ind Eng Chem Res,2008,48(2):914.
49 Alezi D, Belmabkhout Y, Suyetin M, et al. MOF crystal chemistry paving the way to gas storage needs: Aluminum-based soc-MOF for CH4, O2, and CO2 storage[J]. J Am Chem Soc,2015,137(41):13308.
50 Spanopoulos I, Tsangarakis C, Klontzas E, et al. Reticular synthesis of HKUST-like tbo-MOFs with enhanced CH4 storage[J]. J Am Chem Soc,2016,138(5):1568.
51 D′Alessandro D M, Smit B, Long J R. Carbon dioxide capture: Prospects for new materials[J]. Angewandte Chem Int Ed,2010,49(35):6058.
52 Zhang S Y, Liu H, Liu P F, et al.Progress of adsorption-based CO2/CH4 separation by metal organic frameworks[J]. CIESC J,2014, 65(5):1563(in Chinese).
张所瀛, 刘红, 刘朋飞, 等. 金属有机骨架材料在CO2/CH4吸附分离中的研究进展[J].化工学报,2014,65(5):1563.
53 Asadi T, Ehsani M R, Ribeiro A M, et al. CO2/CH4 separation by adsorption using nanoporous metal organic framework Copper-Benzene-1, 3, 5-tricarboxylate tablet[J]. Chem Eng Technol,2013,36(7):1231.
54 Alduhaish O, Wang H, Li B, et al. A threefold interpenetrated pillared-layer metal-organic framework for selective separation of C2H2/CH4 and CO2/CH4[J]. Chem Plus Chem,2016,81(8):764.
55 Liu Y Y, Huang Y, He J J, et al. Adsorption isotherms and selectivity of CO/N2/CO2 on MOF-74(Ni) [J]. CIESC J, 2015, 66(11):4469(in Chinese).
刘有毅, 黄艳, 何嘉杰, 等. CO/N2/CO2在MOF-74 (Ni) 上吸附相平衡和选择性[J].化工学报, 2015, 66(11):4469.
56 Lindinger W, Hansel A, Jordan A. On-line monitoring of volatile organic compounds at pptv levels by means of proton-transfer-reaction mass spectrometry (PTR-MS) medical applications, food control and environmental research[J]. Int J Mass Spectrometry Ion Processes,1998,173(3):191.
57 Bellat J P, Bezverkhyy I, Weber G, et al. Capture of formaldehyde by adsorption on nanoporous materials[J]. J Hazard Mater,2015,300:711.
58 Li W, Wu X, Han N, et al. Core-shell Au@ ZnO nanoparticles derived from Au@ MOF and their sub-ppm level acetone gas-sensing performance[J]. Powder Technol,2016,304:241.
59 Homayoonnia S, Zeinali S. Design and fabrication of capacitive nanosensor based on MOF nanoparticles as sensing layer for VOCs detection[J]. Sensors Actuators B: Chem,2016,237:776.
60 Britt D, Tranchemontagne D, Yaghi O M. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. PNAS,2008,105(33):11623.
61 Yang K, Sun Q, Xue F, et al. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: Influence of molecular size and shape[J]. J Hazard Mater,2011,195:124.
62 Yang K, Xue F, Sun Q, et al. Adsorption of volatile organic compounds by metal-organic frameworks MOF-177[J]. J Environ Chem Eng,2013,1(4):713.
63 Saha D, Bao Z, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A[J]. Environ Sci Technol,2010, 44(5):1820.
64 Tan K, Zuluaga S, Gong Q, et al. Competitive coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74(M= Mg, Co, Ni): The role of hydrogen bonding[J]. Chem Mater,2015,27(6):2203.
65 Chen Y, Yang C, Wang X, et al. Kinetically controlled ammonia vapor diffusion synthesis of a Zn(Ⅱ) MOF and its H2O/NH3 adsorption properties[J]. J Mater Chem A,2016,4(26):10345.
66 Borfecchia E, Maurelli S, Gianolio D, et al. Insights into adsorption of NH3 on HKUST-1 metal-organic framework: A multitechnique approach[J]. J Phys Chem C,2012,116(37):19839.
67 Maes M, Trekels M, Boulhout M, et al. Selective removal of N-he-terocyclic aromatic contaminants from fuels by lewis acidicmetal-organic frameworks[J]. Angewandte Chem,2011,123(18):4296.
68 Wang C Y, Li G, Sun Z G. Denitrogenation through adsorption to sulfonated metal-organic frameworks[J]. Acta Physico-Chimica Sinica,2013,29(11):2422(in Chinese).
王朝阳, 李钢, 孙志国. 磺酸功能化金属-有机骨架吸附脱氮性能[J].物理化学学报,2013,29(11):2422.
69 Li Z, Liao F, Jiang F, et al. Capture of H2S and SO2 from trace sulfur containing gas mixture by functionalized UiO-66(Zr) materials: A molecular simulation study[J]. Fluid Phase Equilibria,2016,427:259.
70 Ma L L. Molecular simulation study of gas mixtures separation in metal-organic frameworks[D]. Beijing: Beijing University of Chemical Technology,2011(in Chinese).
马琳琳. 金属-有机骨架材料中气体混合物吸附分离行为的分子模拟研究[D]. 北京:北京化工大学,2011.
71 Hamon L, Serre C, Devic T, et al. Comparative study of hydrogen sulfide adsorption in the MIL-53 (Al, Cr, Fe), MIL-47 (V),MIL-100 (Cr), and MIL-101(Cr) metal-organic frameworks at room temperature[J]. J Am Chem Soc,2009,131(25):8775.
72 Petit C, Mendoza B, Bandosz T J, et al. Hydrogen sulfide adsorption on MOFs and MOF/graphite oxide composites[J]. Chem Phys Chem,2010,11(17):3678.
73 Khan N A, Jhung S H. Scandium-triflate/metal-organic frameworks: Remarkable adsorbents for desulfurization and denitrogenation[J]. Inorg Chem,2015,54(23):11498.
74 Gong R, Zhou L M, Ma N, et al.Adsorptive performance of benzothiophene using metal organic framework material MOF-5[J].J Fuel Chem Technol,2013,41(5):607(in Chinese).
巩睿, 周丽梅, 马娜, 等. 金属有机骨架材料MOF-5吸附苯并噻吩性能[J]. 燃料化学学报,2013,41(5):607.
75 Zhao X Q, Xin C L, Yin Y C, et al. Research on desulfurization effect of metal-organic framework compound MOF-14[J]. Petrochem Technol Appl,2012(5):393(in Chinese).
赵学勤, 辛春玲, 尹延超, 等. 金属有机骨架化合物MOF-14的脱硫效果研究[J]. 石化技术与应用,2012(5):393.
76 Ren J, Cao G W, Zhang Y. Adsorptive desulfurization of gasoline with Cu(I) based metal-organic framework[J]. J Petrochem Universities,2015,28(3):41(in Chinese).
任靖, 曹光伟, 张勇. Cu(I)金属有机骨架材料在汽油吸附脱硫中的应用[J]. 石油化工高等学校学报,2015,28(3):41.
77 Greathouse J A, Allendorf M D. The interaction of water with MOF-5 simulated by molecular dynamics[J]. J Am Chem Soc,2006, 128(33):10678.
78 Iremonger S S, Liang J, Vaidhyanathan R, et al. Phosphonate monoesters as carboxylate-like linkers for metal organic frameworks[J]. J Am Chem Soc,2011,133(50):20048.
79 Yang J, Grzech A, Mulder F M, et al. Methyl modified MOF-5: A water stable hydrogen storage material[J]. Chem Commun,2011, 47(18):5244.
80 Gelfand B S, Lin J B, Shimizu G K. Design of a humidity-stable metal-organic framework using a phosphonate monoester ligand[J]. Inorg Chem,2015,54(4):1185.
81 Low J J, Benin A I, Jakubczak P, et al. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration[J]. J Am Chem Soc,2009,131(131):15834.
82 Tranchemontagne D J, Hunt J R, Yaghi O M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0[J]. Tetrahedron,2008,64(36):8553.
83 Yuan W, Garay A L, Pichon A, et al. Study of the mechanochemical formation and resulting properties of an archetypal MOF: Cu3-(BTC)2(BTC=1, 3, 5-benzenetricarboxylate)[J]. CrystEngComm,2010,12(12):4063.
84 Fricˇic′ T, Fábián L. Mechanochemical conversion of a metal oxide into coordination polymers and porous frameworks using liquid-assisted grinding (LAG)[J]. CrystEngComm,2009,11(5):743.
[1] 范舟, 黄泰愚, 刘建仪. 硫对镍基合金825(100)电子结构影响的密度泛函研究[J]. 材料导报, 2019, 33(z1): 332-336.
[2] 刘珊, 冯婷, 田薪成, 刘丹荣, 张悦, 李宇亮. 海藻酸钠-水合二氧化锰功能球对Cu(Ⅱ)的吸附性能研究[J]. 材料导报, 2019, 33(z1): 136-140.
[3] 傅寅旭, 许雨熙, 诸葛黔, 王磊, 宋煦, 王旭. 金属有机骨架材料在生物样品前处理中的应用进展[J]. 材料导报, 2019, 33(z1): 408-411.
[4] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[5] 郑云武, 陶磊, 康佳, 黄元波, 刘灿, 郑志锋. 不同原料烘焙炭的理化特性及对亚甲基蓝的吸附性能[J]. 材料导报, 2019, 33(8): 1276-1284.
[6] 臧文洁, 郭丽萍, 曹园章, 张健, 薛晓丽. 内掺氯离子与硫酸根离子在水泥净浆中的交互作用[J]. 材料导报, 2019, 33(8): 1317-1321.
[7] 谢婉晨, 李建三. 木质素磺酸钠在混凝土模拟孔隙液中对碳钢的缓蚀与吸附作用[J]. 材料导报, 2019, 33(8): 1401-1405.
[8] 李芮, 施宇震, 宁平, 谷俊杰, 关清卿, 耿瑞文, 孟凡凡. 改性活性炭吸附甲苯废气的研究进展[J]. 材料导报, 2019, 33(7): 1133-1140.
[9] 张迪, 杨迪, 徐翠, 周日宇, 李浩, 李靖, 王朋. 还原氧化石墨烯高效吸附双酚F的机理研究[J]. 材料导报, 2019, 33(6): 954-959.
[10] 张旭昀, 王文泉, 郭斌, 郑冰洁, 吴戆, 王勇. CaCO3在Fe(100)表面成垢机制的第一性原理研究[J]. 材料导报, 2019, 33(6): 965-969.
[11] 杜娟, 刘青茂, 王付胜, 宋肖肖, 胡雪兰. Ti-6Al-4V钛合金在氢氟酸-硝酸体系下的缓蚀行为及机理[J]. 材料导报, 2019, 33(6): 1000-1005.
[12] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[13] 王朋, 肖迪, 梁妮, 周日宇, 张迪. 电荷辅助氢键的形成机制及环境效应研究进展[J]. 材料导报, 2019, 33(5): 812-818.
[14] 刘德坤, 刘航, 杨柳, 罗永明, 韩彩芸. 镧、铈改性介孔氧化铝对氟离子的吸附[J]. 材料导报, 2019, 33(4): 590-594.
[15] 董海宽, 史力斌. 4d过渡金属掺杂石墨烯对HCN吸附行为的第一性原理研究[J]. 材料导报, 2019, 33(4): 595-604.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed