Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23120135-8    https://doi.org/10.11896/cldb.23120135
  无机非金属及其复合材料 |
环境放射性样品中锕系核素组合分离方法研究进展
古梅, 吕开, 熊亮萍, 胡胜*
中国工程物理研究院核物理与化学研究所,四川 绵阳 621900
Research Progress on the Combined Separation Protocols of Actinides in Environmental Radioactive Samples
GU Mei, LYU Kai, XIONG Liangping, HU Sheng*
Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, Sichuan, China
下载:  全 文 ( PDF ) ( 3276KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 环境放射性样品中锕系核素的准确分析依赖于可靠的化学分离。锕系组合分离是一种快速分离方法,具有同时分离多种核素、提高样品利用率,减少试剂用量和废物产生量等显著优势,成为锕系分析化学的研究热点。本工作综述了锕系核素分离方法及各方法的组合使用,以及自动化分离在锕系组合分离中的应用现状,并重点介绍了基于萃取色谱法的锕系组合分离研究进展。在此基础上,指出建立锕系核素组合分离方法面临的问题,并对该领域的发展趋势进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
古梅
吕开
熊亮萍
胡胜
关键词:  锕系核素  组合分离流程  萃取色谱    
Abstract: Accurate analysis of actinide nuclides in environmental radioactive samples depends on reliable chemical separation. Actinide combining separation is a rapid separation method, which has obvious advantages such as simultaneous separation of multiple nuclides, improvement of sample utilization rate, reduction of reagent consumption and waste generation. Therefore, it has become a research hotspot in actinide analytical chemistry. In this work, the application of actinide separation methods and the combination of these methods, as well as the automation in actinide combining separation are summarized, and the research progress of actinide combining separation based on extraction chromatography is emphatically introduced. On this basis, the challenges and development trend in the field of actinide combining separation are presented.
Key words:  actinides    combined separation process    extraction chromatography
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  O615.11  
基金资助: 中国工程物理研究院院长基金(YZJJLX2020002)
通讯作者:  * 胡胜,中国工程物理研究院核物理与化学研究所研究员、博士研究生导师。2007年获中国工程物理研究院核燃料循环与材料专业博士学位,目前主要从事放射分析化学、放射性核素分离化学等方向的研究工作,已在Analytical Chemical、Chemical Engineering Journal、Talanta、Journal of Material chemical A等期刊发表论文100余篇。 husheng@126.com   
作者简介:  古梅,2003年、2023年分别于南京理工大学和中国工程物理研究院获得工学学士学位和硕士学位。现为中国工程物理研究院核物理与化学研究所副研究员。目前主要从事放化分离与材料研究工作。
引用本文:    
古梅, 吕开, 熊亮萍, 胡胜. 环境放射性样品中锕系核素组合分离方法研究进展[J]. 材料导报, 2024, 38(24): 23120135-8.
GU Mei, LYU Kai, XIONG Liangping, HU Sheng. Research Progress on the Combined Separation Protocols of Actinides in Environmental Radioactive Samples. Materials Reports, 2024, 38(24): 23120135-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120135  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23120135
1 Ketterer M E, Percich A, Husic A. Geophysical Research Letters, 2022, 49(2), 1.
2 Sagan S D. Annual Review of Political Science, 2011(14), 225.
3 David D, Timothy N A, Mehmet S, et al. Nuclear Technology, 2004, 147(1), 69.
4 Lind O C, Salbu B, Janssens K, et al. Journal of Environmental Radioactivity, 2005, 81(1), 21.
5 Kumari I, Kumar B V R, Khanna A. Nuclear Engineering and Design, 2020, 358, 110410.
6 Ortiz-Oliveros H B, Flores-Espinosa R M. Process Safety and Environmental Protection, 2020, 144, 23.
7 Gao R Q, Hou X L, Zhang L Y, et al. Chinese Journal of Analytical Chemistry, 2020, 48(6), 765(in chinese).
高瑞勤, 侯小琳, 张路远, 等. 分析化学, 2020, 48(6), 765.
8 Kenna T C. Journal of Environmental Radioactivity, 2009, 100, 547.
9 Luisier F, Corcho Alvarado J A, Froidevaux P, et al. Journal of Radioanalytical and Nuclear Chemistry, 2009, 281, 425.
10 Donard O F X, Bruneau F, Moldovan M, et al. Analytica Chimica Acta, 2007, 587, 170.
11 Maxwell S L, Culligan B K, Hutchison J B, et al. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3), 1533.
12 Vajda N, Orvenyi T A, Kis-Benedek G, et al. Radiochimica Acta, 2009, 97(8), 395.
13 Veliscek-Carolan J. Journal of Hazardous Materials, 2016, 318(1), 266.
14 Paiva A P, Malik P. Journal of Radioanalytical and Nuclear Chemistry, 2004, 261, 485.
15 A Procedure for the Sequential Determination of Radionuclides in Environmental Samples, International Atomic Energy Agency. Vienna, Austria, 2014, pp.11
16 Lariviere D, Cumming T A, Kiser S, et al. Journal of Analytical Atomic Spectrometry, 2008, 23, 352.
17 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2009, 81, 8185.
18 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2013, 85(22), 2853.
19 Zheng J, Yamada M. Analytical Sciences, 2007, 23(5), 611.
20 Bu W T, Zheng J, Tatsuo A, et al. Journal of Nuclear and Radiochemical Sciences, 2015, 15, 1.
21 Lee Y K, Bakhtiar S N, Akbarzadeh M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2000, 243 (2), 525.
22 Yu Z H, Wang X F, Ding Y Q, et al. Journal of Nuclear and Radiochemistry, 2019, 41(6), 537(in chinese).
余振华, 王秀凤, 丁有钱, 等. 核化学与放射化学, 2019, 41(6), 537.
23 Lujaniene G, Sapolaite J. Nordic nuclear safety research NKS-140 seminar, Tartu, Estonia, 2005, pp.113.
24 Ayranov M, Kraehenbuehl U, Sahli H, et al. Radiochimica Acta, 2005, 93(5), 249.
25 Pimpl M, Higgy R H J. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248(3), 537.
26 Muramatsu Y, Uchida S, Tagami K, et al. Journal of Analytical Atomic Spectrometry, 1999, 14(5), 859.
27 KwongL L W, Lee S H, Gastaud J, et al. Journal of Radioanalytical and Nuclear Chemistry, 2004, 261(2), 283.
28 Godoy M L D P, Godoy J M, Roldao L A. Journal of Environmental Radioactivity, 2007, 97(2-3), 124.
29 La Rosa J J, Mietelski J, Wyse J. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283(2), 385.
30 Michel H, Levent D, Barci V, et al. Talanta, 2008, 74, 1527.
31 Snow M S, Morrison S S, Clark S B, et al. Journal of Environmental Radioactivity, 2017, 172, 89.
32 Kamila K, Timothy A D, Ayman F, et al. Microchemical Journal, 2020, 152, 104426.
33 Horwitz E P, Dietz M L, Chiarizia R, et al. Analytica Chimica Acta, 1995, 310 (1), 63.
34 Maxwell III S L, Jones V D. Talanta, 2009, 80(1), 143.
35 Mellado J, Llauradó M, Rauret G, et al. Analytica Chimica Acta, 2001, 443, 81.
36 Larivière D, Benkhedda K, Kiser S, et al. Analytical Methods, 2010, 2 (3), 259.
37 Guérin N, Calmette R, Larivière D, et al. Analytical Methods, 2011, 3 (7), 1560.
38 Maxwell S L, Brian K, Culligan A Kelsey-Wall, et al. Analytica Chimica Acta, 2011, 701, 112.
39 Lee M H, Park T H, Park J H, et al. Journal of Radioanal Nuclear Chemistry, 2013, 295, 1419.
40 Dai X X, Kramer-Tremblay S. Analytical Chemistry, 2014, 86 (11), 5441.
41 Wang Z T, Zheng J, Cao L G, et al. Analytical Chemistry, 2016, 88(14), 7387.
42 Wang Z T, Zheng J, Ni Y Y, et al. Analytical Chemistry, 2017, 89(4), 2221.
43 Wang Z T, Zheng J, Imanaka T, et al. Journal of Analytical Atomic Spectrometry, 2017, 32 (10), 2034.
44 Maxwell S L, Culligan B, Hutchison J B, et al. Applied Radiation and Isotopes, 2018, 140(1), 102.
45 Vasile M, Jacobs K, Bruggeman M, et al. Applied Radiation and Isotopes, 2018, 134(1), 455.
46 López-Lora M, Chamizo E, Villa-Alfageme M, et al. Talanta, 2018, 178(1), 202.
47 Habibi A, Cariou N, Boulet B, et al. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314 (1), 127.
48 Metzger S C, Ticknor B W, Rogers K T, et al. Analytical Chemistry, 2018, 90 (15), 9441.
49 Metzger S C, Rogers K T, Bostick D A, et al. Talanta, 2019, 198(1), 257.
50 Luo M Y, Xing S, Yang Y G, et al. Journal of Environmental Radioactivity, 2018, 187(1), 73.
51 Wu Y, Dai X X, Christl M, et al. ACS Earth and Space Chemistry, 2021, 5(6), 1316.
52 Han X B, Han X X, Li Z H, et al. Earth Space Chemistry, 2021, 5, 3488.
53 Papp I, Vajda N, Happel S. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(9), 3835.
54 Liu Y Z, Xiao G, Jones R L, et al. Analytical Chemistry, 2022, 94, 18042.
55 Gazquez M J, Gomez D C P, Alonso J J, et al. Talanta, 2023, 253, 123972.
56 Huang Z, Hou X L, Zhao X. Analytical Chemistry, 2023, 95, 12931.
57 Xing S, Peng C Y, Marcus C, et al. Analytical Chemistry, 2023, 95, 3647.
58 Zhang S, Yang G S, Zheng J, et al. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 1083.
59 Trojanowicz M, Kolacińska K, Grate J W. Talanta, 2018, 183(1), 70.
60 Ye X Z, Zhang X X. A course in instrumental analysis (2nd Edition), Peking University Press, China, 2007, pp.349(in Chinese).
叶宪曾, 张新祥. 仪器分析教程, 北京大学出版社, 2007, pp.349.
61 Qiao J X, Hou X L, Mirò M, et al. Analytical Chimica Acta, 2009, 652, 66.
62 Qiao J X, Hou X L, Steier P, et al. Analytical Chemistry, 2015, 87, 7411.
63 Wang X F, Ding Y Q. Progress report on China nuclear science and technology, Atomic Energy Press, China, 2009(1), 81(in Chinese).
王秀凤, 丁有钱. 中国核科技技术进展报告, 原子能出版社, 2009(1), 81.
64 Wang X F, Ding Y Q. Atomic Energy Science and Technology, 2020, 54(5), 895(in Chinese).
王秀凤, 丁有钱. 原子能科学技术, 2020, 54(5), 895.
65 Li Y H, Ding Y Q, Wang X F, et al. Journal of Nuclear and Radioche-mistry, 2022, 44(5), 515(in Chinese).
李宇浩, 丁有钱, 王秀凤, 等. 核化学与放射化学, 2022, 44(5), 515.
66 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2009, 81(19), 8185.
67 Qiao J X, Hou X L, Roos P, et al. Journal of Analytical Atomic Spectrometry, 2010, 25(11), 1769.
68 Qiao J X, Hou X L, Roos P, et al. Analytica Chimica Acta, 2011, 685(2), 111.
69 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2013, 85(5), 11026.
70 Qiao J X, Shi K, Hou X L, et al. Environmental Science & Technology, 2014, 48(7), 3935.
71 Gao J, Benjamin T, Manard A S, et al. Talanta, 2017, 167, 8.
72 Yin Y Y, Meng Z J, Wang Y, et al. Journal of Isotopes, 2017, 30(3), 265(in Chinese).
尹云云, 孟昭菊, 王莹, 等. 同位素, 2017, 30(3), 265.
73 Huang K, Mao G S, Ding Y Q, et al. Journal of Nuclear and Radioche-mistry, 2020(4), 249(in Chinese).
黄昆, 毛国淑, 丁有钱, 等. 核化学与放射化学, 2020(4), 249.
No related articles found!
[1] Huanchun WU, Fei XUE, Chengtao LI, Kewei FANG, Bin YANG, Xiping SONG. Fatigue Crack Initiation Behaviors of Nuclear Power Plant Main Pipe Stainless Steel in Water with High Temperature and High Pressure[J]. Materials Reports, 2018, 32(3): 373 -377 .
[2] Miaomiao ZHANG,Xuyan LIU,Wei QIAN. Research Development of Polypyrrole Electrode Materials in Supercapacitors[J]. Materials Reports, 2018, 32(3): 378 -383 .
[3] Congshuo ZHAO,Zhiguo XING,Haidou WANG,Guolu LI,Zhe LIU. Advances in Laser Cladding on the Surface of Iron Carbon Alloy Matrix[J]. Materials Reports, 2018, 32(3): 418 -426 .
[4] Huaibin DONG,Changqing LI,Xiahui ZOU. Research Progress of Orientation and Alignment of Carbon Nanotubes in Polymer Implemented by Applying Electric Field[J]. Materials Reports, 2018, 32(3): 427 -433 .
[5] Xiaoyu ZHANG,Min XU,Shengzhu CAO. Research Progress on Interfacial Modification of Diamond/Copper Composites with High Thermal Conductivity[J]. Materials Reports, 2018, 32(3): 443 -452 .
[6] Anmin LI,Junzuo SHI,Mingkuan XIE. Research Progress on Mechanical Properties of High Entropy Alloys[J]. Materials Reports, 2018, 32(3): 461 -466 .
[7] Qingqing DING,Qian YU,Jixue LI,Ze ZHANG. Research Progresses of Rhenium Effect in Nickel Based Superalloys[J]. Materials Reports, 2018, 32(1): 110 -115 .
[8] Yaxiong GUO,Qibin LIU,Xiaojuan SHANG,Peng XU,Fang ZHOU. Structure and Phase Transition in CoCrFeNi-M High-entropy Alloys Systems[J]. Materials Reports, 2018, 32(1): 122 -127 .
[9] Changsai LIU,Yujiang WANG,Zhongqi SHENG,Shicheng WEI,Yi LIANG,Yuebin LI,Bo WANG. State-of-arts and Perspectives of Crankshaft Repair and Remanufacture[J]. Materials Reports, 2018, 32(1): 141 -148 .
[10] Xia WANG,Liping AN,Xiaotao ZHANG,Ximing WANG. Progress in Application of Porous Materials in VOCs Adsorption During Wood Drying[J]. Materials Reports, 2018, 32(1): 93 -101 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed