Abstract: Accurate analysis of actinide nuclides in environmental radioactive samples depends on reliable chemical separation. Actinide combining separation is a rapid separation method, which has obvious advantages such as simultaneous separation of multiple nuclides, improvement of sample utilization rate, reduction of reagent consumption and waste generation. Therefore, it has become a research hotspot in actinide analytical chemistry. In this work, the application of actinide separation methods and the combination of these methods, as well as the automation in actinide combining separation are summarized, and the research progress of actinide combining separation based on extraction chromatography is emphatically introduced. On this basis, the challenges and development trend in the field of actinide combining separation are presented.
通讯作者:
* 胡胜,中国工程物理研究院核物理与化学研究所研究员、博士研究生导师。2007年获中国工程物理研究院核燃料循环与材料专业博士学位,目前主要从事放射分析化学、放射性核素分离化学等方向的研究工作,已在Analytical Chemical、Chemical Engineering Journal、Talanta、Journal of Material chemical A等期刊发表论文100余篇。 husheng@126.com
1 Ketterer M E, Percich A, Husic A. Geophysical Research Letters, 2022, 49(2), 1. 2 Sagan S D. Annual Review of Political Science, 2011(14), 225. 3 David D, Timothy N A, Mehmet S, et al. Nuclear Technology, 2004, 147(1), 69. 4 Lind O C, Salbu B, Janssens K, et al. Journal of Environmental Radioactivity, 2005, 81(1), 21. 5 Kumari I, Kumar B V R, Khanna A. Nuclear Engineering and Design, 2020, 358, 110410. 6 Ortiz-Oliveros H B, Flores-Espinosa R M. Process Safety and Environmental Protection, 2020, 144, 23. 7 Gao R Q, Hou X L, Zhang L Y, et al. Chinese Journal of Analytical Chemistry, 2020, 48(6), 765(in chinese). 高瑞勤, 侯小琳, 张路远, 等. 分析化学, 2020, 48(6), 765. 8 Kenna T C. Journal of Environmental Radioactivity, 2009, 100, 547. 9 Luisier F, Corcho Alvarado J A, Froidevaux P, et al. Journal of Radioanalytical and Nuclear Chemistry, 2009, 281, 425. 10 Donard O F X, Bruneau F, Moldovan M, et al. Analytica Chimica Acta, 2007, 587, 170. 11 Maxwell S L, Culligan B K, Hutchison J B, et al. Journal of Radioanalytical and Nuclear Chemistry, 2013, 298(3), 1533. 12 Vajda N, Orvenyi T A, Kis-Benedek G, et al. Radiochimica Acta, 2009, 97(8), 395. 13 Veliscek-Carolan J. Journal of Hazardous Materials, 2016, 318(1), 266. 14 Paiva A P, Malik P. Journal of Radioanalytical and Nuclear Chemistry, 2004, 261, 485. 15 A Procedure for the Sequential Determination of Radionuclides in Environmental Samples, International Atomic Energy Agency. Vienna, Austria, 2014, pp.11 16 Lariviere D, Cumming T A, Kiser S, et al. Journal of Analytical Atomic Spectrometry, 2008, 23, 352. 17 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2009, 81, 8185. 18 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2013, 85(22), 2853. 19 Zheng J, Yamada M. Analytical Sciences, 2007, 23(5), 611. 20 Bu W T, Zheng J, Tatsuo A, et al. Journal of Nuclear and Radiochemical Sciences, 2015, 15, 1. 21 Lee Y K, Bakhtiar S N, Akbarzadeh M, et al. Journal of Radioanalytical and Nuclear Chemistry, 2000, 243 (2), 525. 22 Yu Z H, Wang X F, Ding Y Q, et al. Journal of Nuclear and Radiochemistry, 2019, 41(6), 537(in chinese). 余振华, 王秀凤, 丁有钱, 等. 核化学与放射化学, 2019, 41(6), 537. 23 Lujaniene G, Sapolaite J. Nordic nuclear safety research NKS-140 seminar, Tartu, Estonia, 2005, pp.113. 24 Ayranov M, Kraehenbuehl U, Sahli H, et al. Radiochimica Acta, 2005, 93(5), 249. 25 Pimpl M, Higgy R H J. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248(3), 537. 26 Muramatsu Y, Uchida S, Tagami K, et al. Journal of Analytical Atomic Spectrometry, 1999, 14(5), 859. 27 KwongL L W, Lee S H, Gastaud J, et al. Journal of Radioanalytical and Nuclear Chemistry, 2004, 261(2), 283. 28 Godoy M L D P, Godoy J M, Roldao L A. Journal of Environmental Radioactivity, 2007, 97(2-3), 124. 29 La Rosa J J, Mietelski J, Wyse J. Journal of Radioanalytical and Nuclear Chemistry, 2010, 283(2), 385. 30 Michel H, Levent D, Barci V, et al. Talanta, 2008, 74, 1527. 31 Snow M S, Morrison S S, Clark S B, et al. Journal of Environmental Radioactivity, 2017, 172, 89. 32 Kamila K, Timothy A D, Ayman F, et al. Microchemical Journal, 2020, 152, 104426. 33 Horwitz E P, Dietz M L, Chiarizia R, et al. Analytica Chimica Acta, 1995, 310 (1), 63. 34 Maxwell III S L, Jones V D. Talanta, 2009, 80(1), 143. 35 Mellado J, Llauradó M, Rauret G, et al. Analytica Chimica Acta, 2001, 443, 81. 36 Larivière D, Benkhedda K, Kiser S, et al. Analytical Methods, 2010, 2 (3), 259. 37 Guérin N, Calmette R, Larivière D, et al. Analytical Methods, 2011, 3 (7), 1560. 38 Maxwell S L, Brian K, Culligan A Kelsey-Wall, et al. Analytica Chimica Acta, 2011, 701, 112. 39 Lee M H, Park T H, Park J H, et al. Journal of Radioanal Nuclear Chemistry, 2013, 295, 1419. 40 Dai X X, Kramer-Tremblay S. Analytical Chemistry, 2014, 86 (11), 5441. 41 Wang Z T, Zheng J, Cao L G, et al. Analytical Chemistry, 2016, 88(14), 7387. 42 Wang Z T, Zheng J, Ni Y Y, et al. Analytical Chemistry, 2017, 89(4), 2221. 43 Wang Z T, Zheng J, Imanaka T, et al. Journal of Analytical Atomic Spectrometry, 2017, 32 (10), 2034. 44 Maxwell S L, Culligan B, Hutchison J B, et al. Applied Radiation and Isotopes, 2018, 140(1), 102. 45 Vasile M, Jacobs K, Bruggeman M, et al. Applied Radiation and Isotopes, 2018, 134(1), 455. 46 López-Lora M, Chamizo E, Villa-Alfageme M, et al. Talanta, 2018, 178(1), 202. 47 Habibi A, Cariou N, Boulet B, et al. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314 (1), 127. 48 Metzger S C, Ticknor B W, Rogers K T, et al. Analytical Chemistry, 2018, 90 (15), 9441. 49 Metzger S C, Rogers K T, Bostick D A, et al. Talanta, 2019, 198(1), 257. 50 Luo M Y, Xing S, Yang Y G, et al. Journal of Environmental Radioactivity, 2018, 187(1), 73. 51 Wu Y, Dai X X, Christl M, et al. ACS Earth and Space Chemistry, 2021, 5(6), 1316. 52 Han X B, Han X X, Li Z H, et al. Earth Space Chemistry, 2021, 5, 3488. 53 Papp I, Vajda N, Happel S. Journal of Radioanalytical and Nuclear Chemistry, 2022, 331(9), 3835. 54 Liu Y Z, Xiao G, Jones R L, et al. Analytical Chemistry, 2022, 94, 18042. 55 Gazquez M J, Gomez D C P, Alonso J J, et al. Talanta, 2023, 253, 123972. 56 Huang Z, Hou X L, Zhao X. Analytical Chemistry, 2023, 95, 12931. 57 Xing S, Peng C Y, Marcus C, et al. Analytical Chemistry, 2023, 95, 3647. 58 Zhang S, Yang G S, Zheng J, et al. Journal of Radioanalytical and Nuclear Chemistry, 2021, 329, 1083. 59 Trojanowicz M, Kolacińska K, Grate J W. Talanta, 2018, 183(1), 70. 60 Ye X Z, Zhang X X. A course in instrumental analysis (2nd Edition), Peking University Press, China, 2007, pp.349(in Chinese). 叶宪曾, 张新祥. 仪器分析教程, 北京大学出版社, 2007, pp.349. 61 Qiao J X, Hou X L, Mirò M, et al. Analytical Chimica Acta, 2009, 652, 66. 62 Qiao J X, Hou X L, Steier P, et al. Analytical Chemistry, 2015, 87, 7411. 63 Wang X F, Ding Y Q. Progress report on China nuclear science and technology, Atomic Energy Press, China, 2009(1), 81(in Chinese). 王秀凤, 丁有钱. 中国核科技技术进展报告, 原子能出版社, 2009(1), 81. 64 Wang X F, Ding Y Q. Atomic Energy Science and Technology, 2020, 54(5), 895(in Chinese). 王秀凤, 丁有钱. 原子能科学技术, 2020, 54(5), 895. 65 Li Y H, Ding Y Q, Wang X F, et al. Journal of Nuclear and Radioche-mistry, 2022, 44(5), 515(in Chinese). 李宇浩, 丁有钱, 王秀凤, 等. 核化学与放射化学, 2022, 44(5), 515. 66 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2009, 81(19), 8185. 67 Qiao J X, Hou X L, Roos P, et al. Journal of Analytical Atomic Spectrometry, 2010, 25(11), 1769. 68 Qiao J X, Hou X L, Roos P, et al. Analytica Chimica Acta, 2011, 685(2), 111. 69 Qiao J X, Hou X L, Roos P, et al. Analytical Chemistry, 2013, 85(5), 11026. 70 Qiao J X, Shi K, Hou X L, et al. Environmental Science & Technology, 2014, 48(7), 3935. 71 Gao J, Benjamin T, Manard A S, et al. Talanta, 2017, 167, 8. 72 Yin Y Y, Meng Z J, Wang Y, et al. Journal of Isotopes, 2017, 30(3), 265(in Chinese). 尹云云, 孟昭菊, 王莹, 等. 同位素, 2017, 30(3), 265. 73 Huang K, Mao G S, Ding Y Q, et al. Journal of Nuclear and Radioche-mistry, 2020(4), 249(in Chinese). 黄昆, 毛国淑, 丁有钱, 等. 核化学与放射化学, 2020(4), 249.