Please wait a minute...
材料导报  2024, Vol. 38 Issue (24): 23120071-6    https://doi.org/10.11896/cldb.23120071
  无机非金属及其复合材料 |
液态前驱体化学气相沉积法生长单层二硒化钨
安博星1,2,*, 王雅洁1,2, 肖永厚1,2,*, 楚飞鸿3
1 大连理工大学盘锦产业技术研究院,辽宁 盘锦 124221
2 沈阳化工大学化学工程学院,沈阳 110142
3 河北科技工程职业技术大学,河北 邢台 054000
Growth of Monolayer Tungsten Diselenide via Liquid Precursor Chemical Vapor Deposition
AN Boxing1,2,*, WANG Yajie1,2, XIAO Yonghou1,2,*, CHU Feihong3
1 Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China
2 School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
3 Hebei Vocational University of Technology and Engineering, Xingtai 054000, Hebei, China
下载:  全 文 ( PDF ) ( 4160KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 化学气相沉积(CVD)是实现二维(2D)过渡金属硫族化合物(TMDs)制备的简单有效方法。晶核位置的随机分布和生长可控性差是当前实现大面积高质量制备TMDs的一项巨大挑战。本工作以单层二硒化钨的生长为例,采用液态前驱体并调控其浓度使微量金属前驱体高度均匀地分散在生长衬底表面,可有效诱导低过饱和度,从而降低成核密度,最终得到组分分布均匀、高质量的单层二硒化钨。这种液态前驱体化学气相沉积技术可以推广到其他2D材料的生长,为大面积、均匀的高质量2D材料的生长提供了一种更有效的方式。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
安博星
王雅洁
肖永厚
楚飞鸿
关键词:  液态前驱体  化学气相沉积  可控生长  二硒化钨    
Abstract: Chemical vapor deposition (CVD) is a straightforward and efficient technology used for preparing two-dimensional (2D) transition metal chalcogenides (TMDs). However, the random distribution of nucleus position andpoor growth controllability are currently a great challenge to achieve large scale, high quality TMDs preparation. In this study, taked the growth of monolayer tungsten diselenide (WSe2) as an example. Utilized a liquid phase precursor and adjusted its concentration to prompt the trace metal precursor evenly disperse on the surface of the growth substrate. This approach should reduce nucleation density effectively, and induced low saturation. it’s helpful to successfully formate a monolayer WSe2 with uniform component distribution and high quality. This liquid precursor CVD technique introduced here can be extended to the growth of other 2D materials, and offer a more practical approach for achieving large area, uniform, and high-quality 2D materials.
Key words:  liquid precursor    chemical vapor deposition (CVD)    controllable growth    tungsten diselenide (WSe2)
出版日期:  2024-12-25      发布日期:  2024-12-20
ZTFLH:  O469  
基金资助: 国家自然科学基金(21776028);河北省自然科学基金(A2023108002)
通讯作者:  * 安博星,工学博士,大连理工大学盘锦产业技术研究院工程师,沈阳工业大学、沈阳化工大学校外硕士研究生指导教师。主要研究领域为化工新材料的制备和水环境的高效修复。主持辽宁省化学助剂合成与分离重点实验室开放课题1项。以主要参与人身份参与国家自然科学基金、北京市自然科学基金、北京市教委项目等多项科研项目。已发表SCI论文和核心期刊论文30余篇,申请中国发明专利8项,受邀参与编写专著1本。 anboxing@dlut.edu.cn;肖永厚,工学博士,大连理工大学盘锦产业技术研究院教授级高工。国务院政府特殊津贴专家,中国化工学会过程强化专业委员会首届青年委员。长期致力于多孔吸附材料、低碳烯烃转化等工业催化剂研制,曾开发烯烃异构化催化剂、多种脱硫、脱氮、含氧化合物高效吸附剂并成功放大。主持国家自然科学基金面上项目、中央引导地方项目、中石化总部重点项目、辽宁省重点研发计划等课题;完成多项企业合作项目。参与完成国家863、973、“中石化十条龙科技攻关”等项目。在国内外重要期刊发表学术论文50余篇,申请国际、中国发明专利50余项,获授权近40项。 yonghou.xiao@dlut.edu.cn   
引用本文:    
安博星, 王雅洁, 肖永厚, 楚飞鸿. 液态前驱体化学气相沉积法生长单层二硒化钨[J]. 材料导报, 2024, 38(24): 23120071-6.
AN Boxing, WANG Yajie, XIAO Yonghou, CHU Feihong. Growth of Monolayer Tungsten Diselenide via Liquid Precursor Chemical Vapor Deposition. Materials Reports, 2024, 38(24): 23120071-6.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.23120071  或          http://www.mater-rep.com/CN/Y2024/V38/I24/23120071
1 Wang D S, Zhou Y, Zhang H, et al. Inorganic Chemistry, 2020, 59(23), 17356.
2 Xie C, Mak C, Tao X, et al. Advanced Functional Materials, 2016, 27, 1603886.
3 Liu R, Wang F K, Liu L X, et al. Small Structures, 2020, 2, 2000136.
4 Chaves A, Azadani J G, Alsalman H, et al. nap 2D Materials and Applications, 2020, 4, 29.
5 Mak K F, Shan J. Nature Photonics, 2016, 10, 216.
6 Manzeli S, Ovchinnikov D, Pasquier D, et al. Nature Reviews Materials, 2017, 2, 17033.
7 Tan C L, Cao X H, Wu X J, et al. Chemical Reviews, 2017, 117(9), 6225.
8 Zhang H. ACS Nano, 2015, 9, 9451.
9 Gusakova J, Wang X, Shiau L L, et al. Physica Status Solidi A, 2017, 214, 1700218.
10 Zhang Z W, Liu Y, Dai C, et al. Chemistry of Materials, 2021, 33, 1307.
11 Di J, Xia J, Li H, et al. Nano Energy, 2017, 35, 79.
12 Bersch B M, Eichfeld S M, Lin Y C, et al. 2D Materials, 2017, 4, 025083.
13 Cai J, Han X, Wang X, et al. Matter, 2020, 2, 587.
14 Cai Z, Liu B, Zou X, et al. Chemical Reviews, 2018, 118, 6091.
15 Kim S Y, Kwak J, Ciobanu C V, et al. Advanced Materials, 2019, 31, 1804939.
16 Özden A, Ay F, Sevik C, et al. Japanese Journal of Applied Physics, 2017, 56, 06GG05.
17 Mahyavanshi R D, Kalita G, Sharma K P, et al. Applied Surface Science, 2017, 409, 396.
18 Huang J K, Pu J, Hsu C L, et al. ACS Nano, 2014, 8, 923.
19 Li S, Wang S, Tang D M, et al. Applied Materials Today, 2015, 1, 60.
20 Han A, Aljarb A, Liu S, et al. Nanoscale Horizons, 2019, 4(6), 1434.
21 Park S, Yun S J, Kim Y I,et al. ACS Nano, 2020, 14, 8784.
22 Kim M, Seo J, Kim J, et al. ACS Nano, 2021, 15, 3038.
23 Eichfeld S M, Colon V O, Nie Y, et al. 2D Materials, 2016, 3, 025015.
24 Lee J, Pak S, Giraud P, et al. Advanced Materials, 2017, 29, 1702206.
25 Qin Z, Loh L, Wang J Y, et al. ACS Nano, 2019, 13, 10768.
26 Choi S H, Stephen B, Park J H, et al. Scientific Reports, 2017, 7, 1983.
27 Fan S, Yun S J, Yu W J, et al. Advanced Science, 2020, 7, 1902751.
28 Huang J, Yang L, Liu D, et al. Nanoscale, 2015, 7, 4193.
29 Yun S J, Kim S M, Kim K K, et al. Current Applied Physics, 2016, 16, 1216.
30 Zhou J D, Lin J H, Huang X W, et al. Nature, 2018, 556, 355.
31 Chen J Y, Liu B, Liu Y P, et al. Advanced Materials, 2015, 27, 6722.
32 Chen M R, Zhang A Y, Liu Y H, et al. Nano Research, 2020, 13(10), 2625.
[1] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[2] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
[3] 王云鹏, 刘宇宁, 王同波, 张嘉凝, 莫永达, 娄花芬. 铜箔衬底对化学气相沉积法制备石墨烯的影响[J]. 材料导报, 2024, 38(13): 22110222-5.
[4] 范舒瑜, 匡同春, 林松盛, 代明江. WC-Co硬质合金/CVD金刚石涂层刀具研究现状[J]. 材料导报, 2023, 37(8): 21110003-10.
[5] 胡冬冬, 宋述鹏, 刘俊男, 毕江元, 丁兴. CVD法制备单层二硒化钨薄膜及其生长机制研究[J]. 材料导报, 2023, 37(2): 21050222-6.
[6] 邱昀淙, 宋远强, 李亚利. 甲醇辅助连续制备碳纳米管纤维及其性能研究[J]. 材料导报, 2022, 36(8): 21010059-6.
[7] 吴建飞, 袁红梅, 夏林敏, 赵红艳, 林金国, 李吉庆. 低温等离子体改性技术制备功能材料的研究进展[J]. 材料导报, 2022, 36(21): 20100119-9.
[8] 汪超翔, 郭冲霄, 刘 悦, 范同祥. 采用固体碳源制备石墨烯薄膜研究进展[J]. 材料导报, 2022, 36(16): 21030237-9.
[9] 张祎辰, 王肖剑, 张明锦, 冯晴亮. 二硫化铂的可控合成及应用研究进展[J]. 材料导报, 2022, 36(15): 21050167-12.
[10] 余姝君, 田春蓉. 湿气阻隔涂层的研究进展[J]. 材料导报, 2022, 36(13): 20100166-7.
[11] 李搛倬, 传秀云, 杨扬, 刘芳芳, 齐鹏越. 黄铁矿型FeS2的制备及其储能应用[J]. 材料导报, 2022, 36(1): 20080005-13.
[12] 田春, 唐元洪. 硅纳米管的各种制备方法[J]. 材料导报, 2021, 35(z2): 38-45.
[13] 马新, 邱海鹏, 梁艳媛, 刘善华, 王晓猛, 赵禹良, 陈明伟, 谢巍杰. CVD BN界面层对Si3N4/SiBN复合材料弯曲性能的影响[J]. 材料导报, 2021, 35(z2): 86-89.
[14] 曾静, 胡石林, 吴全峰, 齐鑫, 周文辉. 化学气相沉积法制备高纯硼粉的技术进展[J]. 材料导报, 2021, 35(5): 5089-5094.
[15] 张建华, 王朋厂, 杨连乔. 基于化学气相沉积石墨烯的传感器的研究进展[J]. 材料导报, 2021, 35(15): 15072-15080.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed