无机非金属及其复合材料
|
焊钉锈蚀对混凝土板锈胀开裂行为的数值模拟及相关影响参数分析
蔺鹏臻1,* , 于博2 , 何志刚3
1 兰州交通大学土木工程学院,兰州 730070 2 兰州交通大学甘肃省道路桥梁与地下工程重点实验室,兰州 730070 3 兰州交通大学建筑与城市规划学院,兰州 730070
Numerical Simulation of Welding Nail Corrosion on Rust Expansion and Cracking Behavior of Concrete Slab and Analysis of Related Influencing Parameters
LIN Pengzhen1,* , YU Bo2 , HE Zhigang3
1 School of Civil Engineering, Lan Zhou Jiaotong University, Lanzhou 730070, China 2 Gansu Provincial Key Laboratory of Road Bridge and Underground Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China 3 School of Architecture and Urban Planning, Lanzhou Jiaotong University, Lanzhou 730070, China
摘要 为研究钢混组合梁焊钉部件在腐蚀环境下锈胀诱发混凝土板开裂的行为,基于内聚力模型理论,利用全局插入内聚力单元的方式建立焊钉局部锈胀模型。通过对焊钉位置、直径、间距等参数的分析,研究各参数对混凝土板锈胀力分布、裂缝面特征及开裂过程的影响。结果表明:组合梁内部焊钉,在锈蚀中后期锈胀影响区内的混凝土将产生大量微裂缝,混凝土表面呈现局部网状开裂;焊钉直径从16 mm增加至25 mm,初始裂缝开裂时锈胀力减小了0.82倍;当焊钉纵横间距比大于2时,自由边水平方向产生多条斜裂缝;全局插入粘性单元的有限元模型可以有效且直观的模拟锈胀开裂过程。
关键词:
钢-混凝土组合梁
焊钉锈蚀
锈胀力
混凝土裂缝
数值分析
Abstract: To investigate the cracking behavior of concrete resulting from rust expansion of anchor bolt components in a corrosive environment within reinforced concrete composite beams, a local rust expansion model of anchor bolts was established using the cohesive force model theory and global insertion of cohesive elements. Analyzed anchor bolt parameters such as position, diameter, spacing, and then examined their impacts on the distribution of rust expansion forces, characteristics of resulting cracks, and the overall cracking process in concrete. The findings indicated that an increased anchor bolt diameter should lead to a reduction in rust expansion force at the initial cracking stage. Specifically, augmenting the anchor bolt diameter from 16 mm to 25 mm resulted in an 82% decrease of the rust expansion force at the onset of initial cracking. When the longitudinal and transverse spacing ratio of anchor bolts is greater than 2, multiple diagonal cracks emerged in the horizontal direction of the edge. The finite element model with global insertion of cohesive elements effectively simulates the rust expansion and cracking process.
Key words:
Steel-concrete composite beam
stud corrosion
rust expansion force
concrete crack
numerical analysis
出版日期: 2024-12-25
发布日期: 2024-12-20
基金资助: 甘肃省交通运输厅科研项目(2022-26);甘肃省重点研发计划-工业类项目(23YFGA0042);中央引导地方科技发展资金项目(22ZY1QA005).
通讯作者:
* 蔺鹏臻,兰州交通大学土木工程系教授。现任兰州交通大学科技处处长。甘肃省首批“飞天学者”特聘教授,甘肃省科技领军人才,教育部“长江学者与创新团队发展计划”创新团队核心成员,甘肃省基础研究创新群体带头人,获詹天佑铁道科学技术奖(青年奖)、茅以升科学技术奖(铁道科技奖),主要从事桥梁结构设计理论与施工技术领域的教学和科研工作。 pzhlin@mail.lzjtu.cn
1 Kuang Yachuan, Chen Libin, LI Chaoju et al. Journal of Jilin University (Engineering Science) , 2023 53(2), 538 (in Chinese). 匡亚川, 陈立斌, 李超举, 等. 吉林大学学报(工学版), 2023, 53(2), 538. 2 Xu Bo, Liu Yongjian, ZHU Weiqing, et al. Journal of Traffic and Transportation Engineering , 2019, 19(2), 25 (in Chinese). 许波, 刘永健, 朱伟庆, 等. 交通运输工程学报, 2019, 19(2), 25. 3 Jin Weiliang, Yuan Yinshu, Wei Jun, et al. Durability theory and design method of concrete structure in chloride environment , Science Press, China, 2011 (in Chinese). 金伟良, 袁迎曙, 卫军, 等. 氯盐环境下混凝土结构耐久性理论与设计方法, 科学出版社, 2011. 4 Wang Hailong, Jin Weiliang, Sun Xiaoyan. Journal of Hydraulic Engineering , 2008(7), 863 (in Chinese). 王海龙, 金伟良, 孙晓燕. 水利学报, 2008(7), 863. 5 Xu Yidong, Zheng Yingying, Du Kun. Journal of Southeast University (Natural Science Edition) , 2017, 47(2), 356(in Chinese). 徐亦冬, 郑颖颖, 杜坤. 东南大学学报(自然科学版), 2017, 47(2), 356. 6 Fang Jianke, Xu Yidong, Xu Lifeng, et al. Chinese Journal of Ceramics , 2018, 37(10), 3275(in Chinese). 方建柯, 徐亦冬, 徐立锋, 等. 硅酸盐通报, 2018, 37(10), 3275. 7 Liu Ronggui, Yu Mengxiong. Journal of Jiangsu University(Natural Science Edition) , 2016, 37(2), 219 (in Chinese). 刘荣桂, 喻孟雄. 江苏大学学报(自然科学版), 2016, 37(2), 219. 8 Jin Bo, Sun Nan, Fang Qihong. Chinese Journal of Solid Mechanics , 2022, 43(4), 456 (in Chinese). 金波, 孙楠, 方棋洪. 固体力学学报, 2022, 43(4), 456. 9 Du Xiu li, Jin Liu. Chinese Journal of Computational Mechanics , 2015, 32(6), 772 (in Chinese). 杜修力, 金浏. 计算力学学报, 2015, 32(6), 772. 10 Hu Zhijian, Xia Leilei, Cheng Chen. Journal of Harbin Institute of Technology , 2020, 52(3), 99 (in Chinese). 胡志坚, 夏雷雷, 程晨. 哈尔滨工业大学学报, 2020, 52(3), 99. 11 Xiao Lin, Wei Huanbo, Wei Xing. Journal of Jilin University(Engineering and Technology Edition) 2023, 54(7), 1958 (in Chinese). 肖林, 魏欢博, 卫星. 吉林大学学报(工学版), 2023, 54(7), 1958. 12 Jin H, Yu S. Construction and Building Materials , 2022, 318, 126173. 13 Wu Yingyao. Research on two-stage rust-crack Theory and Crack Development of Concrete Structure. Master’s Thesis, Zhejiang University, china, 2014(in Chinese). 吴瑛瑶. 混凝土结构锈裂二阶段理论及裂缝开展研究. 硕士学位论文, 浙江大学, 2014. 14 Zhao Y, Ren H, DaI H, et al. Corrosion Science , 2011, 53(5), 1646. 15 Duan Hongyan, Wang Zhiming, Sang Yuancheng Shanghai Jiaotong Univ(Sci) , 2017, 51(1), 113 (in Chinese). 段红燕, 王智明, 桑元成. 上海交通大学学报(自然版), 2017, 51(1), 113. 16 Burgold A, Roth S, Kuna M. Key Engineering Materials , 2018, 774, 167. 17 Xie Hao, Sun Xiaotong, Men Yangqing. Journal of Northwestern Polytechnical University , 2022, 40(1), 175(in Chinese). 谢浩, 孙晓彤, 门燕青. 西北工业大学学报, 2022, 40(1), 175. 18 Alfano G. Composites Science & Technology , 2006, 66(6), 723. 19 Yang Zhen-jun, Huang Yu-jie, Yao Feng. Engineering Mechanics , 2020, 37(8), 158 (in Chinese). 杨贞军, 黄宇劼, 尧锋. 工程力学, 2020, 37(8), 158. 20 Benzeggagh M L, Kenane M. Composites Science and Technology , 1996, 56(4), 439. 21 Wang Yanlei, Sun Hujie, Cao Mingmin. Journal of Building Structures , 2015, 36(S1), 355 (in Chinese). 王言磊, 孙会杰, 曹明敏. 建筑结构学报, 2015, 36(S1), 355. 22 Wang Qiaoping, Wu Shengxing, Wang Xiaohua. Industrial Construction , 2005, 35(3), 4(in Chinese). 王巧平, 吴胜兴, 王晓华. 工业建筑, 2005, 35(3), 4. 23 Zhongjiao Highway planning and Design Institute Co. , LTD. Code for Design and Construction of highway steel-concrete composite bridges , China Communications Press, China, 2015(in Chinese). 中交公路规划设计院有限公司. 公路钢混组合桥梁设计与施工规范. 人民交通出版社, 2015.
[1]
Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2 /C Composite Materials [J]. Materials Reports, 2018, 32(3): 357
-361
.
[2]
Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts [J]. Materials Reports, 2018, 32(3): 362
-367
.
[3]
Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials [J]. Materials Reports, 2018, 32(3): 384
-390
.
[4]
Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review [J]. Materials Reports, 2018, 32(3): 412
-417
.
[5]
Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application [J]. Materials Reports, 2018, 32(1): 102
-109
.
[6]
Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials [J]. Materials Reports, 2018, 32(1): 116
-121
.
[7]
Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries [J]. Materials Reports, 2018, 32(1): 12
-33
.
[8]
Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding [J]. Materials Reports, 2018, 32(1): 128
-134
.
[9]
Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles [J]. Materials Reports, 2018, 32(1): 41
-46
.
[10]
Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials [J]. Materials Reports, 2018, 32(1): 76
-85
.
Viewed
Full text
Abstract
Cited
Shared
Discussed