Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 122-128    https://doi.org/10.11896/j.issn.1005-023X.2017.019.017
  新材料新技术 |
QLED研究及显示应用进展
宋志成1, 刘代明2,3, 刘卫东1, 王庆康2
1 海信集团多媒体研发中心显示研发部,青岛266000;
2 上海交通大学薄膜与微细技术教育部重点实验室,上海200240;
3 山东科技大学材料科学与工程学院纳米工程所,青岛266590
Review on QLED and Its Applications in Display
SONG Zhicheng1, LIU Daiming2,3, LIU Weidong1, WANG Qingkang2
1 Multimedia R&D Center, Hisense Electric Appliance Co., Ltd, Qingdao 266000;
2 Key Laboratory for Thin Film and Microfabrication Technology of Ministry of Education, Shanghai Jiao Tong University,Shanghai 200240;
3 Institute of Nano Engineering,School of Material Science and Engineering, Shandong University of Science and Technology, Qingdao 266590
下载:  全 文 ( PDF ) ( 1739KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 胶体量子点由于具有高的量子效率、窄的激发光谱、独特的尺寸依赖激发光谱和良好的溶液加工兼容性等优异特性,在高色彩质量显示方面有着巨大的应用潜力。随着量子效率提升及电致发光原理、激子衰减机制、器件结构优化和电荷有效输运等研究的持续深入,QLED的发光效率从小于0.01%提升到20.5%,已接近商业化OLED的效率。从显示技术的长远发展来看,量子点电致发光显示将超越光致发光的量子点增亮膜和量子点彩色滤光片,有望成为下一代主流显示技术。根据“材料—器件—显示”的主线,依次对量子点材料发光特性和材料类别,以及发光器件的结构类型、发光机制和效率提升等方面展开概述,最后简要介绍了量子点电致发光显示的相关技术挑战和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
宋志成
刘代明
刘卫东
王庆康
关键词:  量子点  电致发光  外量子效率  显示    
Abstract: Due to high quantum efficiency, narrow spectral emission, unique size-tunable spectra and excellent solution-processcompatibility, quantum dots have great potential in high-color-quality display. With deep exploration on mechanisms of excitation and attenuation, improvements of quantum yields, structural optimization of devices and effective transportation of charge carrier, external quantum efficiency of quantum-dot electroluminescent devices have been increased from less than 0.01% to about 20.5%, which is very close to the value of commercial OLEDs. In the long term,quantum-dot electroluminescent technology will transcend the photoluminescence brightness enhancement film and color filter products, and it is expected to become the next-generation display technology. Along with the link of “materials to device to panel”, this review first outlines the properties and categories of quantum dots. Next, the structures, types,mechanisms of devices are summarized. The key scientific and technological challenges of commercialization of quantum-dot display are finally identified.
Key words:  quantum dots    electroluminescent    external quantum efficiency    display
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  TN312+.8  
作者简介:  宋志成:男,1981年生,硕士,工程师,研究方向为量子点显示技术 E-mail:songzhicheng@hisense.com 刘代明:通讯作者,男,1986年生,博士,主要从事微纳米光电器件及量子点显示技术的研究 E-mail:daiming1205@sjtu.edu.cn
引用本文:    
宋志成, 刘代明, 刘卫东, 王庆康. QLED研究及显示应用进展[J]. 《材料导报》期刊社, 2017, 31(19): 122-128.
SONG Zhicheng, LIU Daiming, LIU Weidong, WANG Qingkang. Review on QLED and Its Applications in Display. Materials Reports, 2017, 31(19): 122-128.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.017  或          https://www.mater-rep.com/CN/Y2017/V31/I19/122
1 Hildebrandt N, Spillmann C M, Algar W R, et al. Energy transfer with semiconductor quantum dot bioconjugates: A versatile platform for biosensing, energy harvesting, and other developing applications[J]. Chem Rev,2017,117(2):536.
2 Chen O, Zhao J, Chauhan V P, et al. Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking[J]. Nat Mater,2013,12(5):445.
3 Rosenthal S J, Mcbride J, et al. Synthesis, surface studies, composition andstructural characterization of CdSe, core/shell, and biolo-gically active nanocrystals[J]. Surf Sci Rep,2007,62(4):111.
4 Song J, Li J, Li X, et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3)[J]. Adv Mater,2015,27(44):7162.
5 Pan J, Quan L N, Zhao Y, et al. Highly efficient perovskite-quantum-dot light-dmitting diodes by surface engineering[J]. Adv Mater,2016,28(39):8718.
6 Yang X Y , Zhao D W, Swee Leck K, et al. Full visible range cove-ring InP/ZnS nanocrystals with high photometric performance and their application to white quantum dot light-emitting diodes[J]. Adv Mater,2012,24:4180.
7 Kim B H, Cho C H, Park S J, et al. Ni/Au contact to silicon quantum dot light-emitting diodes for the enhancement of carrier injection and light extraction efficiency[J]. Appl Phys Lett,2006,89(6):11.
8 Shen H, Lin Q, Wang H, et al. Efficient and bright colloidal quantum dot light-emitting diodes via controlling the shell thickness of quantum dots[J]. ACS Appl Mater Interfaces,2013,5:12011.
9 Lim J, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP @ ZnSeS quantum dots[J]. ACS Nano,2013,7(10):9019.
10 Jang E, Jun S, Jang H, et al. White-light-emitting diodes with quantum dot color converters for display backlights[J]. Adv Mater,2010,22(28):3076.
11 Liu S, Liu W, Ji W, et al. Top-emitting quantum dots light-emitting devices employing microcontact printing with electricfield-indepen-dent emission[J]. Sci Rep,2016,6:22530.
12 Kim H M, Jang J. High-efficiency inverted quantum-dot light emitting diodes for display[J]. SID Symposium Digest of Technical Papers,2014,45(1):67.
13 Dong Y, Caruge J M, Zhou Z, et al. Ultra-bright, highly efficient,low roll-off inverted quantum-dot light emitting devices (QLEDs)[J]. SID Symposium Digest of Technical Papers,2015,46:270.
14 Wood V, Bulovic' V. Colloidal quantum dot light-emitting devices[J]. Nano Rev,2010,1:1.
15 Supran G J, Shirasaki Y, Song K W, et al. QLEDs for displays and solid-state lighting[J]. MRS Bull,2013,38(9):703.
16 Wood V, Panzer M J, Caruge J M, et al. Air-stable operation of transparent, colloidal quantum dot based LEDs with a unipolar device architecture[J]. Nano Lett,2010,10(1):24.
17 Anikeeva P, Madigan C, Halpert J, et al. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots[J]. Phys Rev B,2008,78(8):1.
18 Bae W K, Park Y S, Lim J, et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes[J]. Nat Commun,2013,4:2661.
19 Shirasaki Y, Supran G J, et al. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat Photon,2013,7(1):13.
20 Shen H, Cao W, Shewmon N T, et al. High-efficiency, low turn-on voltage blue-violet quantum-dot-based light-emitting diodes[J]. Nano Lett,2015,15(2):1211.
21 Lee K H, Lee J H, Song W S, et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices[J]. ACS Nano,2013,7(8):7295.
22 Son D I, Kim H H, Hwang D K, et al. Inverted CdSe-ZnS quantum dots light-emitting diode using low-work function organic material polyethylenimine ethoxylated[J].J Mater Chem C,2014,2(3):510.
23 Bai L, Yang X, Ang C Y, et al. A quinoxaline based N-heteroacene interfacial layer for efficient hole-injection in quantum dot light-emitting diodes[J]. Nanoscale,2015,7:11531.
24 Leck K S, Divayana Y, Zhao D, et al. Quantum dot light-emitting diode with quantum dots inside the hole transporting layers[J]. ACS Appl Mater Interfaces,2013,5(14):6535.
25 Dai X, Zhang Z, Jin Y, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature,2014,515(7525):96.
26 Mueller A H, Petruska M A, Achermann M, et al. Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers[J]. Nano Lett,2005,5:1039.
27 Caruge J M, Halpert J E, Wood V, et al. Colloidal quantum-dot light-emitting diodes with metal-oxide charge transport layers[J]. Nat Photon,2008,2(4):247.
28 Kwak J, Bae W K, Lee D, et al. Bright and efficient full-color colloidal quantum dot light-emitting diodes using an inverted device structure[J]. Nano Lett,2012,12(5):2362.
29 Wood V, Panzer M J, Halpert J E, et al. Selection of metal oxide charge transport layers for colloidal quantum dot LEDs[J]. ACS Nano,2009,3(11):3581.
30 Cho K S, Lee E K, et al. High-performance crosslinked colloidal quantum-dot light-emitting diodes[J]. Nat Photon,2009,3(6):341.
31 Mashford B, Stevenson M, Popovic Z, et al. High-efficiency quantum-dot light-emitting devices with enhanced charge injection[J]. Nat Photon,2013,7:407.
32 Sun L, Choi J J, Stachnik D, et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control[J]. Nat Nanotechnol,2012,7(6):369.
33 Zorn M, Bae W K, Kwak J, et al. Quantum dot-block copolymer hybrids with improved properties and their application to quantum dot light-emitting eevices[J]. ACS Nano,2009,3(5):1063.
34 Castan A, Kim H M, Jang J. All-solution-processed inverted quantum-dot light-emitting diodes[J]. ACS Appl Mater Interfaces,2014,6(4):2508.
35 Hofmann S, Thomschke M, Leo K. Top-emitting organic light-emitting diodes[J]. Opt Express,2011,19:1250.
36 Yang Y, Shu-Fen C, Jun X, et al. Light out-coupling process in organic light emitting device[J]. Acta Phys Sin,2011,60(4):1.
37 Busch K, von Freymann G, Linden S, et al. Periodic nanostructures for photonics[J]. Phys Rep,2007,444(3-6):101.
38 Lv H, Shen H, Jiang Y, et al. Porous-pyramids structured silicon surface with low reflectance over a broad band by electrochemical etching[J]. Appl Surf Sci,2012,258:5451.
39 Shen X, Wang Q, et al. Performance enhancement in a-Si∶H/μc-Si∶H tandem solar cells with periodic microstructured surfaces[J]. Opt Lett,2015,40(7):1290.
40 Lee W, Park S. Porous anodic aluminum oxide: Anodization and templated synthesis of functional nanostructures[J]. Chem Rev,2014,114:7487.
41 Parker A R, Townley H E. Biomimetics of photonic nanostructures[J]. Nat Nanotechnol,2007,2(6):347.
42 Liu D, Wang Q, Shen W, et al. Self-cleaning antireflective coating with a hierarchical texture for light trapping in micromorph solar cells[J]. J Mater Chem C,2017,5:103.
43 Fu P H, Lin G J, Wang H P, et al. Enhanced light extraction of light-emitting diodes via nano-honeycomb photonic crystals[J]. Nano Energy,2014,8:78.
44 Kyong H, Jang J, Choi J, et al. Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes[J]. Opt Express,2006,14(19):8654.
45 Bermel P, Luo C, Zeng L, et al. Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals[J]. Opt Express,2007,15(25):16986.
46 Coe-Sullivan S, Steckel J S, Woo W K, et al. Large-area ordered quantum-dot monolayers via phase separation during spin-casting[J]. Adv Funct Mater,2005,15(7):1117.
47 Pickering S, Kshirsagar A, Ruzyllo J, et al. Patterned mist deposition of tri-colour CdSe/ZnS quantum dot films toward RGB LED devices[J]. Opto-Electron Rev,2010,20(2):148.
48 Kim B H, Onses M S, Lim J Bin, et al. High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes[J]. Nano Lett,2015,15(2):969.
49 Kong Y L, Tamargo I, Kim H, et al. 3D printed quantum dot light-emitting diodes[J]. Nano Lett,2014,14(12):7017.
50 Park Y, Roh Y G, Kim U J, et al. Nanoscale patterning of colloidal quantum dots on transparent and metallic planar surfaces[J]. Nanotechnology,2012,23(35):355302.
51 Kim L, Anikeeva P O, et al. Contact printing of quantum dot light-emitting devices[J]. Nano Lett,2008,8(12):4513.
52 Choi M K, Yang J, Kang K, et al. Wearable red-green-blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing[J]. Nat Commun,2015,6:7149.
53 Park J S, Kyhm J, Kim H H, et al. Alternative patterning process for realization of large-area, full-color, active quantum dot display[J]. Nano Lett,2016,16(11):6946.
54 Kim T H, Cho K S, et al. Full-colour quantum dot displays fabricated by transfer printing[J]. Nat Photon,2011,5(3):176.
55 Coe-sullivan S, Zhou Z, Niu Y, et al. Quantum dot light emitting Diodes for near-to-eye and direct view display applications[J]. SID Symposium Digest of Technical Papers,2012,42(1):135.
56 Yang Y, Zheng Y, Cao W, et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nat Photon,2015,9:1.
[1] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[2] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[3] 林坚, 张松林, 王悦安, 孙浩, 聂钰昌, 陈德睢. 氧化镍空穴材料在Ⅱ-Ⅵ族量子点电致发光器件中的应用进展[J]. 材料导报, 2024, 38(14): 22100205-8.
[4] 于巧玲, 刘成宝, 金涛, 陈丰, 钱君超, 邱永斌, 孟宪荣, 陈志刚. CuS/CQDs/g-C3N4复合材料的合成及光催化性能[J]. 材料导报, 2024, 38(11): 22090279-7.
[5] 何敬敬, 王旭, 牛强. 钙钛矿量子点在光伏电池中的应用进展[J]. 材料导报, 2024, 38(10): 22110228-13.
[6] 赵艳艳, 范敬煜, 魏景, 施欢贤. 碳量子点/Bi2WO6复合材料高效光催化降解RhB和杀灭大肠杆菌及其催化活性增强机理研究[J]. 材料导报, 2023, 37(5): 21060126-8.
[7] 王达浩, 谢凤鸣, 魏怀鑫, 胡英元, 赵鑫. 双苯磺酰基苯类延迟荧光材料的合成及电致发光性质[J]. 材料导报, 2023, 37(4): 21060007-5.
[8] 刘飞燕, 赵笙良, 赖璇迪, 陆志扬, 李霖峰, 韩培刚, 陈丽琼. 基于金纳米簇和碳量子点的比率荧光传感法快速检测Hg2+[J]. 材料导报, 2023, 37(21): 22070224-8.
[9] 李晨, 陈叶青, 全志鹏, 吴晓仪, 饶鹏鹏, 倪宗铭, 陈岩, 吴文海, 陈钊. 深蓝光发射碳点的改性及在电致发光器件中的应用[J]. 材料导报, 2023, 37(15): 22020030-6.
[10] 姚静锋, 李昊泽, 吴平, 谢凤鸣, 胡英元, 赵鑫. 具有分子间电荷转移效应的D-σ-A型热激活延迟荧光材料及其电致发光性能[J]. 材料导报, 2023, 37(14): 22010216-8.
[11] 陈园虹, 陈婷, 谢志翔, 徐彦乔, 胡泽浩, 林坚. 掺杂型Ⅰ-Ⅲ-Ⅵ族多元量子点的制备及应用研究进展[J]. 材料导报, 2023, 37(10): 21090296-10.
[12] 张文博, 石建丽, 马建中, 卫林峰, 范倩倩. 荧光碳量子点及其在防伪中的应用[J]. 材料导报, 2022, 36(7): 20110186-11.
[13] 王琼, 张伊, 唐浩, 胡云楚, 王文磊. 量子点在光电化学传感器中的研究进展[J]. 材料导报, 2022, 36(18): 20090134-8.
[14] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[15] 徐卓凡, 彭舒廷, 周鹤, 郭媛媛, 周国富, 徐雪珠. 含氟高分子涂料的合成及电润湿性能研究进展[J]. 材料导报, 2022, 36(16): 20110218-15.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed