无机非金属及其复合材料
|
深蓝光发射碳点的改性及在电致发光器件中的应用
李晨, 陈叶青* , 全志鹏, 吴晓仪, 饶鹏鹏, 倪宗铭, 陈岩, 吴文海, 陈钊
五邑大学应用物理与材料学院,广东 江门 529000
Modification of Deep-blue Luminescent Carbon Dots and Application in Electroluminescent Devices
LI Chen, CHEN Yeqing* , QUAN Zhipeng, WU Xiaoyi, RAO Pengpeng, NI Zongming, CHEN Yan, WU Wenhai, CHEN Zhao
School of Applied Physics and Materials, Wuyi University, Jiangmen 529000, Guangdong, China
摘要 深蓝色电致发光二极管(LED)在显示和照明领域中发挥着至关重要的作用。然而,目前报道的蓝色发光二极管的发射波长仅能达到460~480 nm,难以实现更短波长的发射。柠檬酸和尿素体系碳点作为一种荧光可调的发光材料,在深蓝发光方面具有优势。然而,柠檬酸尿素体系碳点是由富含亲水性官能团的小分子作为前驱体合成,因此,合成的碳点为亲水性碳点,严重限制了其在电致发光器件中应用。在此,本工作提出了一种以柠檬酸和尿素为前驱体,油胺为表面改性剂,一锅法合成疏水性碳点的方法,通过油胺中的氨基与碳点表面的羧基进行酰胺化反应,使油胺的长链烷烃包覆在碳点表面,实现疏水性碳点的可控合成,保持了碳点的深蓝光发射,并将其成功应用于电致发光器件。
关键词:
碳点
表面修饰
深蓝发光
电致发光器件
Abstract: Deep blue light-emitting diodes (LED) played a vital role in display devices and lighting. However, the emission wavelengths of blue light-emitting diodes reported at present were almost focused between 460—480 nm, while shorter emission have seldomly been reported. Citrate and urea based carbon dots system had many advantages in deep blue electroluminescent devices due to their tunable emissions through synthesis parameter adjustment. There is still one problem that the hydrophilic carbon dots could hardly be applied in the electroluminescent devices. Hence, we presented a one-pot synthesis of hydrophobic carbon dots modified by oleamine. The -NH2 in oleamine reacted with the carboxyl group on the surface of carbon dots through amidation reaction. Therefore, the long-chain alkanes of oleamine could be modified on the surface of carbon dots to obtain the hydrophobic carbon dots. The deep blue emission of carbon dots was retained, which was further applied in the deep blue emissive electroluminescent devices.
Key words:
carbon dot
surface modification
deep blue emission
electroluminescent device
出版日期: 2023-08-10
发布日期: 2023-08-07
基金资助: 五邑大学青年科研基金团队项目(2019td03);广东省普通高校重点领域专项 (2021ZDZX1022)
通讯作者:
* 陈叶青,五邑大学应用物理于材料学院教授、硕士研究生导师。2013年于韩国釜庆国立大学物理系获得博士学位,2017—2018年在中科院长春应用化学研究所林君研究员课题组访学。近年来主要从事微纳米发光材料的合成、生长机理及荧光性能研究,主要集中在荧光碳纳米点的性质及其在LED方向的应用研究。在Small、Nanoscale、J.Phys.Chem.Lett.、CrystEngComm、J.Am.Ceram.Soc、J.Alloys Comp 等国际学术期刊上发表SCI论文20余篇。yqchenwyu@126.com
作者简介: 李晨,2018年6月于广东工业大学获得工学学士学位。现为五邑大学应用物理与材料学院硕士研究生,在陈叶青教授的指导下进行研究。目前主要研究领域为碳点在电致发光器件应用。
引用本文:
李晨, 陈叶青, 全志鹏, 吴晓仪, 饶鹏鹏, 倪宗铭, 陈岩, 吴文海, 陈钊. 深蓝光发射碳点的改性及在电致发光器件中的应用[J]. 材料导报, 2023, 37(15): 22020030-6.
LI Chen, CHEN Yeqing, QUAN Zhipeng, WU Xiaoyi, RAO Pengpeng, NI Zongming, CHEN Yan, WU Wenhai, CHEN Zhao. Modification of Deep-blue Luminescent Carbon Dots and Application in Electroluminescent Devices. Materials Reports, 2023, 37(15): 22020030-6.
链接本文:
http://www.mater-rep.com/CN/10.11896/cldb.22020030
或
http://www.mater-rep.com/CN/Y2023/V37/I15/22020030
1 Lee S J,Park J S,Yoon K J,et al.Advanced Functional Materials ,2008,18 (24),3922. 2 Dai X,Zhang Z,Jin Y,et al.Nature ,2014,515 (7525),96 3 Yan S,Tian W,Chen H,et al.Advanced Optical Materials ,2021,9,2001709 4 Shirasaki Y,Supran G J,Bawendi M G,et al.Nature Photonics ,2012,7(1),13. 5 Bai J,Chang C,Wei J,et al.Optical Materials Express ,2019,9(7),3089. 6 Chen F,Lin Q,Shen H,et al.Materials Chemistry Frontiers ,2020,4 (5),1340. 7 Tonzola C J,Kulkarni A P,Gifford A P,et al.Advanced Functional Materials ,2007,17 (6),863. 8 Albrecht K,Matsuoka K,Fujita K,et al.Angewandte Chemie (International ed.in English) ,2015,54 (19),5677. 9 Tang X,Bai Q,Shan T,et al.Advanced Functional Materials ,2018,28,1705813. 10 Lim H,Cheon H J,Woo S J,et al.Advanced Materials ,2020,32 (47),e2004083. 11 Wang Y,Yun J H,Wang L,et al.Advanced Functional Materials ,2021,31,2008332. 12 Lin H,Mao J,Qin M,et al.Nanoscale ,2019,11 (36),16907. 13 Liu Y,Cui J,Du K,et al.Nature Photonics ,2019,13 (11),760. 14 Xu W,Hu Q,Bai S,et al.Nature Photonics ,2019,13 (6),418. 15 Hu T,Wen Z,Wang C,et al.Nanoscale Advances ,2019,1 (4),1413. 16 Su R,Guan Q,Cai W,et al.RSC Advances ,2019,9 (17),9700. 17 Xia C,Zhu S,Feng T,et al.Advanced Science (Weinh) ,2019,6 (23),1901316. 18 Zhu P,Tan K,Chen Q,et al.Chemistry of Materials ,2019,31 (13),4732. 19 Zholobak N M,Popov A L,Shcherbakov A B,et al.Beilstein Journal of Nanotechnol ,2016,7,1905. 20 Kong D,Yan F,Luo Y,et al.Analytica Chimica Acta ,2017,953,63. 21 Chen P,Zhang J,He X,et al.Biomaterials Science ,2020,8 (13),3730. 22 Yuan F,Wang Z,Li X,et al.Advanced Materials ,2017,29,1604436. 23 Yuan F,Wang Y K,Sharma G,et al.Nature Photonics ,2019,14 (3),171. 24 Wang X,Zhang X,Gu X,et al.Advanced Optical Materials ,2020,8,2000239. 25 Wang X,Ma Y,Wu Q,et al.Laser & Photonics Reviews ,2021,15,2000412. 26 Miao X,Qu D,Yang D,et al.Advanced Materials ,2018,30,1704740. 27 Ananthanarayanan A,Wang Y,Routh P,et al.Nanoscale ,2015,7 (17),8159. 28 Zhou D,Jing P,Wang Y,et al.Nanoscale Horizons ,2019,4 (2),388. 29 Strauss V,Kahnt A,Zolnhofer E M,et al.Advanced Functional Materials ,2016,26 (44),7975. 30 Zhou Z,Ushakova E V,Liu E,et al.Nanoscale ,2020,12 (20),10987. 31 Ding H,Yu S B,Wei J S,et al.ACS Nano ,2016,10 (1),484. 32 Fan Y,Yang X,Yin C,et al.Nanotechnology ,2019,30 (26),265704. 33 Wang F,Chen Y H,Liu C Y,et al.Chem Chemical Communications (Cambridge,England) ,2011,47 (12),3502. 34 Yuan F,Yuan T,Sui L,et al.Nature Communications ,2018,9 (1),2249. 35 Zou Y,Cai L,Song T,et al.Small Science ,2021,1,2000050. 36 Xie L,Xiong X,Chang Q,et al.Small ,2019,15 (16),e1900111.
[1]
Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells [J]. Materials Reports, 2018, 32(3): 337
-356
.
[2]
Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials [J]. Materials Reports, 2018, 32(3): 368
-372
.
[3]
Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks [J]. Materials Reports, 2018, 32(3): 391
-397
.
[4]
Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review [J]. Materials Reports, 2018, 32(3): 398
-404
.
[5]
Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites [J]. Materials Reports, 2018, 32(3): 434
-442
.
[6]
Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites [J]. Materials Reports, 2018, 32(3): 473
-482
.
[7]
Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model [J]. Materials Reports, 2018, 32(3): 496
-502
.
[8]
Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques [J]. Materials Reports, 2018, 32(3): 503
-509
.
[9]
Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal [J]. Materials Reports, 2018, 32(3): 510
-514
.
[10]
Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability [J]. Materials Reports, 2018, 32(1): 1
-11
.
Viewed
Full text
Abstract
Cited
Shared
Discussed