Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (19): 104-111    https://doi.org/10.11896/j.issn.1005-023X.2017.019.015
  材料综述 |
多聚磷酸改性沥青研究现状及展望*
刘祥, 张正伟, 杨小龙, 邹晓龙
长安大学公路学院,西安 710064
Status Quo and Future Prospect of Polyphosphoric-acid-modified Asphalt
LIU Xiang, ZHANG Zhengwei, YANG Xiaolong, ZOU Xiaolong
School of Highway,Chang’an University,Xi’an 710064
下载:  全 文 ( PDF ) ( 1474KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为明确多聚磷酸(PPA)改性沥青的研究现状,系统阐述了PPA对沥青的改性机理,归纳了PPA改性沥青的制备工艺,重点梳理了PPA对沥青路用性能的影响规律,论述了PPA改性沥青未来研究的发展方向。分析结果表明:PPA改性沥青的作用机理和制备工艺研究不足是制约其在我国推广使用的重要原因;PPA的添加能明显改善沥青的高温性能和抗老化性能,其对沥青水稳定性的影响取决于集料和沥青类型等多方面因素,而PPA改性沥青的低温性能和疲劳特性目前尚无定论,有待进一步研究。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘祥
张正伟
杨小龙
邹晓龙
关键词:  道路工程  改性沥青  多聚磷酸(PPA)    
Abstract: In order to clarify the status quo of polyphosphoric-acid (PPA)-modified asphalt, the modified mechanisms of PPA on the aspects are systematically elucidated. The preparation processes of PPA modified asphalt are summarized, the effect laws of PPA on the pavement performance of asphalt binders are investigated, and the development directions of PPA modified asphalt are discussed. The shortcomings of previous researches on modified mechanism and preparation technology are the two main factors which restrict the application of PPA modified asphalt in China. The addition of PPA to asphalt can effectively improve the high temperature performance and anti-aging ability, while the impact of PPA on the moisture susceptibility of asphalt depends on many factors, for instance, the source of aggregates and asphalts. Nevertheless, the effect of PPA on the low temperature performance and fatigue resistance of asphalt has no final conclusions.
Key words:  road engineering    modified asphalt    polyphosphoric acid (PPA)
出版日期:  2017-10-10      发布日期:  2018-05-07
ZTFLH:  U414  
  TB324  
基金资助: *国家自然科学基金(51408287;51668038);甘肃省杰出青年基金(1606RJDA318)
作者简介:  刘祥:男,1990年生,博士研究生,主要研究方向为道路结构与材料 E-mail:xiangliu2016@chd.edu.cn
引用本文:    
刘祥, 张正伟, 杨小龙, 邹晓龙. 多聚磷酸改性沥青研究现状及展望*[J]. 《材料导报》期刊社, 2017, 31(19): 104-111.
LIU Xiang, ZHANG Zhengwei, YANG Xiaolong, ZOU Xiaolong. Status Quo and Future Prospect of Polyphosphoric-acid-modified Asphalt. Materials Reports, 2017, 31(19): 104-111.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.019.015  或          https://www.mater-rep.com/CN/Y2017/V31/I19/104
1 Polacco G, Filippi S, Merusi F, et al. A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility[J]. Adv Colloid Interface Sci,2015,224:72.
2 Zhang M M. Research on the microstructure and technical perfor-mance of polyphoric acid modified asphalt[D]. Xi’an: Chang’an University,2012(in Chinese).
张铭铭. 多聚磷酸改性沥青微观结构及技术性能研究[D]. 西安: 长安大学,2012.
3 Baldino N, Gabriele D, Lupi F R, et al. Rheological effects on bitumen of polyphosphoric acid (PPA) addition[J]. Constr Build Mater,2013,40:397.
4 Zhang Z P, Jia M, Wei L, et al. Rerearch pregress of polyphosphoric acid modified asphalt[J]. J China Foreign Highway,2016,36(2):230(in Chinese).
张增平, 贾猛, 魏龙, 等. 多聚磷酸改性沥青的研究进展[J]. 中外公路,2016,36(2):230.
5 Rebelo L M, Cavalcante P N, de Sousa J S, et al. Micromorphology and microrheology of modified bitumen by atomic force microscopy[J]. Road Mater Pavement Des,2014,15(2):300.
6 Yan K Z, Zhang H L, Xu H B. Effect of polyphosphoric acid on physical properties, chemical composition and morphology of bitumen[J]. Constr Build Mater,2013,47:92.
7 Sarnowski M. Rheological properties of road bitumen binders modified with SBS polymer and polyphosphoric acid[J]. Roads Bridges-Drogi i Mosty,2015,14(1):47.
8 Ye Q S, Fu H Y. Rheological properties of polyphosphoric acid modified asphalt binder[J]. Indian J Eng Mat Sci,2014,21(2):214.
9 You J M. PPA and SBS composite modified asphalt modified process research[J]. Highway Eng,2014,39(4):141(in Chinese).
游金梅. 多聚磷酸与SBS复合改性沥青改性工艺研究[J]. 公路工程,2014,39(4):141.
10 Bennert T, Martin J V. Polyphosphoric acid in combination with styrene-butadiene-styrene block copolymer—Laboratory mixture eva-luation[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Sacramento,2010:773.
11 Fee D, Maldonado R, Reinke G, et al. Polyphosphoric acid modification of asphalt[J]. Transp Res Record,2010, 2179:49.
12 Baumgardner G L, Masson J F, Hardee J R, et al. Polyphosphoric acid modified asphalt: Proposed mechanisms[J]. J Association of Asphalt Paving Technologists,2005,74:283.
13 Wei J M, Zhang Y Z, Youtcheff J S. Effect of polyphosphoric acid on the surface free energy of asphalt binders[J]. Acta Petrol Sin: Pet Process Section,2011,27(2):280(in Chinese).
魏建明, 张玉贞, Youtcheff J S. 多聚磷酸对沥青表面自由能的影响[J]. 石油学报:石油加工,2011,27(2):280.
14 Zhang H L, Shi C J, Yu J Y, et al. Modification and its mechanism of different asphalts by polyphosphoric acid[J]. J Build Mater,2013,16(2):255(in Chinese).
张恒龙, 史才军, 余剑英, 等. 多聚磷酸对不同沥青的改性及改性机理研究[J]. 建筑材料学报,2013,16(2):255.
15 Ma Q F, Xin X, Fan W Y, et al. Rheological properties and modification mechanism of PPA modified asphalt[J]. J China Univ Pet,2015,39(6):165(in Chinese).
马庆丰, 辛雪, 范维玉, 等. 多聚磷酸改性沥青流变性能及改性机制研究[J]. 中国石油大学学报,2015,39(6):165.
16 Fu Z G, Zhao Y Q, Sun Q Q. Modification mechanisms of polyphosphoric acid and SBS on asphalt[J]. Acta Mater Compos Sin,2017,34(6):1374(in Chinese).
付国志, 赵延庆, 孙倩倩. 多聚磷酸与SBS复合改性沥青的改性机制[J]. 复合材料学报, 2017,34(6):1374.
17 White G. Inter-batch and inter-feedstock variability of an acid modified bitumen[J]. Road Mater Pavement Des,2016,17(3):658.
18 Masson J. Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen[J]. Energy Fuels,2008,22(4):2637.
19 Rossi C O, Spadafora A, Teltayev B, et al. Polymer modified bitumen: Rheological properties and structural characterization[J]. Colloid Surf A:Physicochem Eng Asp,2015,480:390.
20 Huang S C, Turner T F, Miknis F P, et al. Long-term aging cha-racteristics of polyphosphoric acid-modified asphalts[J]. Transp Res Record,2008,2051(2051):1.
21 Yadollahi G, Mollahosseini H S. Improving the performance of crumb rubber bitumen by means of poly phosphoric acid (PPA) and vestenamer additives[J]. Constr Build Mater,2011, 25(7):3108.
22 Huang S C, Miknis F P, Schuster W, et al. Rheological and chemical properties of hydrated lime and polyphosphoric acid-modified asphalts with long-term aging[J]. J Mater Civ Eng, 2011,23(5):628.
23 Gentile L, Filippelli L, Rossi C O, et al. Rheological and H-1-NMR spin-spin relaxation time for the evaluation of the effects of PPA addition on bitumen[J]. Mol Cryst Liquid Cryst,2012, 558:54.
24 McGennis R B. Case study: Implementation of polyphosphoric acid modification of asphalt binders and related experience[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Sacramento,2010:793.
25 Dourado E R, Pizzorno B S, Motta L M G, et al. Analysis of asphaltic binders modified with PPA by surface techniques[J]. J Microsc,2014,254(3):122.
26 Zhang F, Yu J Y. The research for high-performance SBR compound modified asphalt[J]. Constr Build Mater,2010,24(3):410.
27 Santos S D, Partl M N, Poulikakos L D. Newly observed effects of water on the microstructures of bitumen surface[J]. Constr Build Mater,2014,71:618.
28 Ramayya V V, Ram V V, Krishnaiah S, et al. Performance of VG30 paving grade bitumen modified with polyphosphoric acid at medium and high temperature regimes[J]. Constr Build Mater,2016,105:157.
29 Fini E H, Al-Qadi I L, You Z P, et al. Partial replacement of asphalt binder with bio-binder: Characterisation and modification[J]. Int J Pavement Eng,2012,13(6):515.
30 Reinke G, Glidden S. Analytical procedures for determining phosphorus content in asphalt binders and impact of aggregate on quantitative recovery of phosphorus from asphalt binders[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Sacramento,2010:695.
31 Baumgardner G L. Why and how of polyphosphoric acid modification—An industry perspective[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Sacramento,2010:663.
32 Yu W K. The research of polyphosphoric acid modified asphalt[D]. Chongqing: Chongqing Jiaotong University,2011(in Chinese).
余文科. 多聚磷酸改性沥青的研究[D]. 重庆:重庆交通大学,2011.
33 Hao P W, Chen Z J, Zhang M M, et al. Current situation and deve-lopment trend of polyphosphoric acid modified asphalt[J]. Road Machinery Construction Mechanization,2014, 31(9):38(in Chinese).
郝培文,陈治君,张铭铭,等. 多聚磷酸改性沥青技术现状及发展趋势[J]. 筑路机械与施工机械化,2014,31(9):38.
34 Nunez J Y M, Domingos M D I, Faxina A L. Susceptibility of low-density polyethylene and polyphosphoric acid-modified asphalt bin-ders to rutting and fatigue cracking[J]. Constr Build Mater,2014,73:509.
35 Baldino N, Gabriele D, Rossi C O, et al. Low temperature rheology of polyphosphoric acid (PPA) added bitumen[J]. Constr Build Mater,2012,36:592.
36 Cao X J, Zhang Z X, Hao P W, et al. Effect of polyphosphoric acid on the high and low temperature property of matrix asphalt mixture[J]. J Wuhan University of Technology,2014, 36(6):47(in Chinese).
曹晓娟,张振兴,郝培文,等. 多聚磷酸对沥青混合料高低温性能影响研究[J]. 武汉理工大学学报,2014,36(6):47.
37 Zhang F, Hu C B. Influence of aging on thermal behavior and cha-racterization of SBR compound-modified asphalt[J]. J Therm Anal Calorim,2014,115(2):1211.
38 Li C, Wu D, Wang Z H, et al. High and low temperature rheological properties of polyphosphoric acid modified asphalt binder[J]. J Funct Mater,2016,47(6):6022(in Chinese).
李超, 邬迪, 王子豪, 等. 多聚磷酸改性沥青结合料高低温流变特性[J]. 功能材料,2016, 47(6):6022.
39 Domingos M D I, Faxina A L. Rheological behaviour of bitumens modified with PE and PPA at different MSCR creep-recovery times[J]. Int J Pavement Eng,2015,16(9):771.
40 Fu L Q, Wang Z L, Hang X M, et al. Performance research of polyphosphoric acid modified asphalt[J]. J Highway Transportation Res Development,2008,25(2):16(in Chinese).
付力强, 王子灵, 黄晓明, 等. 多聚磷酸改性沥青的性能研究[J]. 公路交通科技,2008, 25(2):16.
41 Soenen H, Heyrman S, Lu X, et al. The interaction of polyphosphoric acid with bituminous binders[C]//8th RILEM International Symposium on Testing and Characterization of Sustainable and Innovative Bituminous Materials. Dordrecht,2016.
42 Wang L, Wang Z H, Li C. Based on viscoelastic theory to study the low temperature performance of polyphosphoric acid asphalt[J]. Acta Mater Compos Sin,2017,34(2):322(in Chinese).
王岚, 王子豪, 李超. 基于黏弹性理论的多聚磷酸改性沥青低温性能[J]. 复合材料学报, 2017,34(2):322.
43 Velasquez R, Tabatabaee H, Bahia H. Low temperature cracking characterization of asphalt binders by means of the Single-Edge Notch Bending (SENB) test[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Tampa,2011:583.
44 Thomas K P, Turner T F. Polyphosphoric-acid modification of asphalt binders[J]. Road Mater Pavement Des,2008,9(2):181.
45 Edwards Y, Tasdemir Y, Isacsson U. Rheological effects of commercial waxes and polyphosphoric acid in bitumen 160/220—low temperature performance[J]. Fuel,2006, 85(7-8):989.
46 Mao S P, Xiong L Q. Research on polyphosphoric acid used in SBS modified asphalt[J]. Petroleum Asphalt,2010,24(5):28(in Chinese).
毛三鹏, 熊良铨. 多聚磷酸在SBS改性沥青中的应用研究[J]. 石油沥青,2010,24(5):28.
47 Aflaki S, Hajikarimi P, Fini E H, et al. Comparing effects of biobinder with other asphalt modifiers on low-temperature characteristics of asphalt[J]. J Mater Civ Eng,2014,26(3):429.
48 Cao W D, Liu L M, Liu Z P, et al. Research on polyphosphoric acid modified asphalt[J]. J China Foreign Highway,2010,30(3):252(in Chinese).
曹卫东, 刘乐民, 刘兆平, 等. 多聚磷酸改性沥青的试验研究[J]. 中外公路,2010,30(3):252.
49 Masson J F, Collins P, Woods J R, et al. Chemistry and effects of polyphosphoric acid on the microstructure, molecular mass, glass transition temperatures and performance grades of asphalts[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Minneapolis,2009:455.
50 Zegeye E T, Moon K H, Turos M, et al. Low temperature fracture properties of polyphosphoric acid modified asphalt mixtures[J]. J Mater Civ Eng,2012,24(8):1089.
51 Aflaki S, Tabatabaee N. Proposals for modification of Iranian bitumen to meet the climatic requirements of Iran[J]. Constr Build Mater,2009,23(6):2141.
52 Wang L, Wang Z H, Li C. Research on the high temperature rheological properties of polyphosphoric acid modified asphalt[J]. Acta Mater Compos Sin,2017,34(7):1610(in Chinese).
王岚, 王子豪, 李超. 多聚磷酸改性沥青老化前后高温流变性能[J]. 复合材料学报,2017, 34(7):1610.
53 Filippis P D, Giavarini C, Scarsella M. Improving the ageing resis-tance of straight-run bitumens by addition of phosphorus compounds[J]. Fuel,1995,74(74):836.
54 Araujo M, Lins V D C, Pasa V M D, et al. Weathering aging of modified asphalt binders[J]. Fuel Process Technol,2013,115:19.
55 Mothe M G, Leite L F M, Mothe C G. Kinetic parameters of diffe-rent asphalt binders by thermal analysis[J]. J Therm Anal Calorim,2011,106(3):679.
56 Zhang F, Yu J U. A study on the aging kinetics of PPA modified asphalt[J]. Pet Sci Technol, 2010,28(13):1338.
57 Huang W D, Lv Q, Xiao F P. Investigation of using binder bond strength test to,evaluate adhesion and self-healing properties of modified asphalt binders[J]. Constr Build Mater,2016, 113:49.
58 Reinke G, Glidden S, Herlitzka D, et al. PPA modified binders and mixtures: Aggregate and binder interactions, rutting and moisture sensitivity of mixtures[C]//Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions. Sacramento,2010:719.
59 Orange G, Martin J V, Menapace A, et al. Rutting and moisture resistance of asphalt mixtures containing polymer and polyphosphoric acid modified bitumen[J]. Road Mater Pavement Des, 2004,5(3):323.
60 Abuawad I M A, Al-Qadi I L, Trepanier J S. Mitigation of moisture damage in asphalt concrete: Testing techniques and additives/modi-fiers effectiveness[J]. Constr Build Mater, 2015,84:437.
61 Jafari M, Babazadeh A. Evaluation of polyphosphoric acid-modified binders using multiple stress creep and recovery and linear amplitude sweep tests[J]. Road Mater Pavement Des, 2016,17(4):859.
62 Schuster W C, Wolf J M, Miknis F P. Phosphorous-31 NMR studies of MnRoad test track cells[J]. Road Mater Pavement Des,2011,12(4):931.
63 Pamplona T F, Faxina A L. Effect of polyphosphoric acid on asphalt binders with different chemical composition[C]//TRB 94th Annual Meeting. Washington DC,2015.
64 Kodrat I, Sohn D, Hesp S A M. Comparison of polyphosphoric acid-modified asphalt binders with straight and polymer-modified mate-rials[J]. Transp Res Record,2007,1998(1):47.
65 Hou X J. The effect of PPA on polymer modified asphalt and its mixtures[J]. Highway Eng, 2016,41(1):221(in Chinese).
侯晓晶. PPA对聚合物改性沥青及其混合料技术性能的影响[J]. 公路工程,2016,41(1):221.
66 You J M. PPA,PPA and SBS composite modified mixture road performance research[J]. Highway Eng,2014,39(6):289(in Chinese).
游金梅. 多聚磷酸以及多聚磷酸与SBS复合改性沥青混合料路用性能研究[J]. 公路工程,2014,39(6):289.
[1] 田威, 云伟, 党可欣, 李腾. 不同钙源EICP溶液改良路基黄土动力特性研究[J]. 材料导报, 2024, 38(9): 22110275-9.
[2] 王超, 宋立昊, 孙彦广, 宫官雨. 道路沥青疲劳与断裂特性研究进展及发展趋势[J]. 材料导报, 2024, 38(9): 22090197-9.
[3] 延西利, 郑涛, 蒋双全, 李卫成. 沥青温拌技术分类及温拌效果的试验评价方法[J]. 材料导报, 2024, 38(4): 22080003-8.
[4] 兰添晖, 刘旭, 贾存兴, 王凌一, 张军朝, 马国伟, 张默. 沥青胶结料应变延迟恢复特性的动态剪切流变试验表征[J]. 材料导报, 2024, 38(4): 22020138-7.
[5] 王黎明, 孙永卓, 庞宏, 许继新, 董明泽. 微波加热对石油沥青的化学、流变及工程特性的影响[J]. 材料导报, 2024, 38(24): 23120216-8.
[6] 牛冬瑜, 黄山, 师伟博, 谢希望, 汪严, 高仰明. 粗集料接触配位参数影响下沥青混合料的抗断裂特性研究[J]. 材料导报, 2024, 38(23): 23050048-10.
[7] 季节, 张梓源, 文龙, 尤鹏超, 马童, 黄昶惟. 粉胶比对煤直接液化残渣复合改性沥青胶浆及混合料低温性能的影响[J]. 材料导报, 2024, 38(22): 23090053-7.
[8] 刘亚敏, 韩旭晖, 高晨光, 钟国亮. 全程老化沥青中温抗疲劳性能及预测模型研究[J]. 材料导报, 2024, 38(21): 23070147-6.
[9] 郑直, 郭乃胜, 金鑫, 房辰泽, 尤占平, 谭忆秋. 水性丙烯酸交通标线涂料研究现状与发展趋势[J]. 材料导报, 2024, 38(21): 22120007-12.
[10] 唐杰, 赵华, 高红成. 碳化硅粉填充沥青混合料微波自愈合性能及合理掺量[J]. 材料导报, 2024, 38(20): 23080070-10.
[11] 张磊, 王鹏, 杨永志, 邢超, 谭忆秋. 基于LCA的不同设计寿命沥青路面能耗排放分析[J]. 材料导报, 2024, 38(20): 23080071-10.
[12] 王超, 任正阳, 周波超, 宫官雨, 季晓斌. 不同种类道路沥青材料异味特征及析源分析[J]. 材料导报, 2024, 38(2): 22040368-5.
[13] 况栋梁, 马小军, 马晓燕, 袁斌, 侯俊鹏, 蔡军. 废机油残留物再生剂对老化沥青动态力学性能和组分迁移的影响[J]. 材料导报, 2024, 38(2): 22050182-8.
[14] 王志臣, 孙雅珍, 郭乃胜. 基于连续时间谱的沥青混合料黏弹性参数换算[J]. 材料导报, 2024, 38(18): 22120218-6.
[15] 董仕豪, 韩森, 宿金菲, 陈德, 苏会锋. 沥青路面表面纹理三维评价方法及其计算边界条件分析[J]. 材料导报, 2024, 38(18): 23050210-9.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed