Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 109-114    https://doi.org/10.11896/j.issn.1005-023X.2017.012.023
  材料研究 |
中温沥青中甲苯可溶组分的热解特性及热转化产物的性质*
朱亚明1, 赵雪飞1, 程俊霞1, 刘巍1, 吕君1,2, 王莹3
1 辽宁科技大学,辽宁省先进煤焦化及煤资源高效利用工程研究中心, 鞍山 114051;
2 齐齐哈尔大学化学与化学工程学院, 齐齐哈尔 161006;
3 鞍山兴德材料科技股份有限公司, 鞍山 114048
Pyrolysis Characteristics and Properties of Thermal Conversion Products on Toluene Soluble Component from Medium Pitch
ZHU Yaming1, ZHAO Xuefei1, CHENG Junxia1, LIU Wei1, LU Jun1,2, WANG Ying3
1 Engineering Research Center of Advanced Coal Coking and Efficient Use of Coal Resources, University of Science and Technology Liaoning, Anshan 114051;
2 College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006;
3 Anshan Xingde Material Technology Co. Ltd, Anshan 114048
下载:  全 文 ( PDF ) ( 1440KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以中温煤沥青的甲苯可溶组分为原料,进行元素分析和TG/DTG分析,并且利用偏光显微镜、X射线单晶衍射仪、拉曼光谱以及相应的分峰拟合等数学方法对热转化的产物进行研究。以实验获得的数据为基础,采用Flynn-Wall-Ozawa 法和Kissinger-Akahira-Sunose 法计算得到反应活化能,采用 Satava-Sastak法求解热解反应动力学参数。实验结果表明,中温沥青中甲苯可溶组分的热解反应活化能为E=88.48 kJ/mol,指前因子lgA=10.22,反应级数为2级,热解反应机理适合随机成核及其随后的增长模型。1 000 ℃焙烧后的炭化产物的光学显微组分含量为:镶嵌型23.74%,粗纤维型14.80%,细纤维17.88%,大片结构30.45%。由XRD研究结果可知,趋于规整结构的碳微晶含量为41.86%。Raman光谱分析研究结果表明,石墨结构的碳微晶含量为11.59%,缺陷石墨碳含量为79.31%,无定形碳含量为9.10%。热转化产物具有很好的可石墨化性。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱亚明
赵雪飞
程俊霞
刘巍
吕君
王莹
关键词:  中温沥青  甲苯可溶组分  热转化  微观结构    
Abstract: Elemental composition, pyrolysis characteristics and microcrystalline structure of thermal conversion products on toluene soluble component from medium pitch were studied by elemental analysis, TG/DTG, polarizing microscope, X-ray diffraction, Raman spectrum and curve-fitting methods. The Flynn-Wall-Ozawa method and Kissinger-Akahira-Sunose method were used to calculate the pyrolysis activation energy of toluene soluble component. The Satava-Sastak method was used to investigate the pyrolysis kinetic parameters of toluene soluble component from medium pitch. Briefly, the activation energy (E) and pre-exponential factor (A) were E=88.48 kJ/mol and lgA=10.22, the reaction series was 2, and the pyrolysis mechanism model of toluene soluble is random nucleation and subsequent growth. What’s more, the optical microstructure of calcined thermal conversion product shows that the distribution of optical microstructure contents were mosaic structure (23.74%), crude fiber structure (14.80%), fine fiber structure (17.88%), and large structure (30.45%), respectively. Combined with XRD analysis and curve-fitting method, it was revealed that the content of ordered carbon crystallite (Ig) in the product was 41.86%. Raman spectrum and curve-fitted method proves that the content of ideal graphite carbon crystallite was 11.59%, the content of detect carbon crystallite was 79.31%, and the ratio of amorphous carbon was 9.10%. The thermal conversion product has a good graphitization ability.
Key words:  medium pitch    toluene soluble component    thermal conversion    microstructure
               出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TQ522.65  
基金资助: *国家自然科学基金(U1361126);教育部博士点基金(20132120110001)
通讯作者:  赵雪飞:通讯作者,男,1956年生,教授,博士研究生导师,主要研究方向为煤焦油深加工及煤基炭材料的研究 E-mail:zhao_xuefei@sohu.com   
作者简介:  朱亚明:男,1989年生,博士研究生,主要从事煤焦油沥青的深加工及沥青基炭材料的研究 E-mail:zhuyaming0504@163.com
引用本文:    
朱亚明, 赵雪飞, 程俊霞, 刘巍, 吕君, 王莹. 中温沥青中甲苯可溶组分的热解特性及热转化产物的性质*[J]. 《材料导报》期刊社, 2017, 31(12): 109-114.
ZHU Yaming, ZHAO Xuefei, CHENG Junxia, LIU Wei, LU Jun, WANG Ying. Pyrolysis Characteristics and Properties of Thermal Conversion Products on Toluene Soluble Component from Medium Pitch. Materials Reports, 2017, 31(12): 109-114.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.023  或          http://www.mater-rep.com/CN/Y2017/V31/I12/109
1 Burchell T D. Carbon materials for advanced technologies[M].New York:Pergamon,1999.
2 Mora E, Santamaría R, Blanco C, et al. Mesophase development in petroleum and coal-tar pitches and their blends [J]. J Anal Pyrol,2003,68-69:409.
3 Gray R J, Krupinski K C, Marsh H. Introduction to carbon techno-logies[M]. Alicante: Universidad Alicante,1997:329.
4 Ramjee S, Rand B, Foche W W. Low shear rheological behaviour of two-phase mesophase pitch [J]. Carbon,2015,82:368.
5 Bhatia G, Fitzer E, Kompalik D. Mesophase formation in defined mixtures of coal tar pitch fractions [J]. Carbon,1986,24:489.
6 Sun Q, Wang B C, Zhang H P, et al. The influence of a magnetic field during carbonization on the microstructure and electrical conductivity of needle cokes [J]. New Carbon Mater,2011,26:429.
7 Li G N, Peng Y L, Song S L, et al. Obtaining needle coke from coal liquefaction residue [J]. Chem Tech Fuels Oils,2012,48:349.
8 Mochida I, Yoon S H, Takano N, et al. Microstructure of mesophase pitch-based carbon fiber and its control [J]. Carbon,1996,34:941.
9 Yu B J, Wang C Y, Chen M M, et al. Two-step chemical conversion of coal tar pitch to isotropic spinable pitch [J]. Fuel Process Tech-nol,2012,104:155.
10 Li T Q, Liu X J, Wang C Y, et al. Structural characteristics of mesophase spheres prepared from coal tar pitch modified by phenolic resin [J]. Chinese J Chem Eng,2006,14:660.
11 Yang Y S, Wang C Y, Chen M M, et al. The role of primary quinoline insoluble on the formation of mescarbon microbeads [J]. Fuel Process Technol,2011,92:154.
12 Han Y J, Kim J, Yeo J S, et al. Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch [J]. Carbon,2015,94:432.
13 Knight S A. Analysis of aromatic petroleum fraction by means of absorption mode carbon-13N.M.R. spectroscopy [J]. Chem Ind,1967,11:1920.
14 Clutter D R, Leonidas P, Stenger R L, et al. Nuclear magnetic resonance spectrometry of petroleum frantions. Carbon-13 and proton nuclear magnetic resonance characterizations in terms of average molecule parameters[J]. Anal Chem,1972,44:1395.
15 Li Chunfeng, Zhang Pengzhou, Qian Shu’an. Structural analysis of some domestic petroleum heavy residues by combined 1H-NMR-IR spectroscopy [J]. J Fuel Chem Technol,1981,10(4):353(in Chinese).
李春锋, 张蓬洲, 钱树安.用1H-NMR结合IR光谱解析法对我国若干重质油组成结构的研究[J].燃料化学学报,1981,10(4):353.
16 Huang X N, Kocaefe D, Kocafe Y, et al. Interaction of bio-coke with different coal tar pitches [J]. Fuel,2016,179:179.
17 Öner F O, Yürüm A, Yürüm A. Structural characterization of semicokes produced from the pyrolysis of petroleum pitches [J]. J Anal Appl Pyrol, 2015,111:15.
18 Lee S, Eom Y, Kim B Y, et al. The thermotropic liquid crystalline behavior of mesophase pitches wit different chemical structures [J]. Carbon,2015,81:694.
19 Álvarez P, Granda M, Sutil J, et al. A unified process for preparing mesophase and isotropic material from anthracene oil-based pitch [J]. Fuel Process Technol,2011,92:421.
20 Asenjo N G, Botas C, Blanco C, et al. Synthesis of activated carbons by chemical activation of new anthracene oil-based pitches and their optimization by response surface methodology [J]. Fuel Process Technol,2011, 92:1987.
21 Díez N, Álvarez P, Santamaría R, et al. Optimisation of the melt-spinning of anthracene oil-based pitch for isotropic carbon fibre pre-paration [J]. Fuel Process Technol,2012,93:99.
22 Álvarez P, Granda M, Sutil J, et al. Characterization and pyrolysis behavior of novel anthracene oil derivatives [J]. Energy Fuels,2008,22:4077.
23 Morga R, Jolonek I, Kruszewska K, et al. Relationships between quality of coals, resulting cokes, and micro-Raman spectral characteristics of these cokes [J]. Int J Coal Geol,2015, 144-155:130.
24 Sadezky A, Muckenhuber H, Grothe H, et al. Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information [J]. Carbon,2005,43:1731.
25 Morga R. Micro-Raman spectroscopy of carbonized semifusinite and fusinite [J]. Int J Coal Geol,2011,87:253.
26 Beyssac O, Goffe B, Petitet J P, et al. On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy [J]. Spectrochim Acta A,2003,59:2267.
27 Tian L, Tahmasebi A, Yu J L. An experimental study on thermal decomposition behavior of magnesite [J]. J Therm Anal Calorim,2014,118:1577.
28 Zhu Ganyu, Li Huiquan, Wu Huixiong, et al. Non-isothermal decomposition kinetics of Methyl N-Phenyl Carbamate for preparation of Phenyl isocyanate [J].Chinese J Process Eng,2012,12(4):608(in Chinese).
朱干宇,李会泉,邬慧雄,等. 苯氨基甲酸甲酯热解制备苯基异氰酸酯的非等温动力学 [J]. 过程工程学报,2012,12(4):608.
29 Trittschack R, Grobéty B, Brodard P. Kinetics of the chrysotile and brucite dehydroxylation reaction: A combined non-isothermal/isothermal thermogravimetric analysis and high-temperature X-ray powder diffraction study [J]. Phys Chem Minerals,2014,41:197.
30 Manoj B, Kunjomana A G. Study of stacking structure of amorphous carbon by X-ray diffraction technique [J]. Int J Electrochem Sci,2012,7:3127.
31 Rantitsch G, Bhattacharyya A, Schenk J, et al. Assessing the quality of metallurgical coke by Raman spectroscopy [J]. Int J Coal Geol,2014,130:1.
[1] 陈永佳, 刘建科. SiO2掺杂浓度对ZnO压敏陶瓷结构与性能的影响[J]. 材料导报, 2019, 33(z1): 161-164.
[2] 张默, 王诗彧. 常温制备赤泥-低钙粉煤灰基地聚物的试验和微观研究[J]. 材料导报, 2019, 33(6): 980-985.
[3] 潘清, 陈婷, 潘锐之, 刘宝, 李东旭. 复掺硅灰的硫酸钙晶须改性水泥基复合材料的力学性能与微观结构[J]. 材料导报, 2019, 33(2): 257-263.
[4] 王耀城,杨文根,李周义,刘伟,刘冰. 利用XCT技术检测水泥基材料微观结构的研究进展[J]. 材料导报, 2019, 33(17): 2902-2909.
[5] 王译文, 王海斗, 马国政, 陈书赢, 何鹏飞, 丁述宇. Ti4O7功能陶瓷材料研究与应用现状[J]. 材料导报, 2019, 33(1): 143-151.
[6] 郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
[7] 畅庚榕, 刘明霞, 马飞, 徐可为. 微应变诱导各向异性硅纳米晶形成及其光学特性[J]. 材料导报, 2018, 32(18): 3104-3109.
[8] 葛茂忠, 项建云, 范真. 激光熔覆修复对TC4钛合金疲劳裂纹扩展速率的影响[J]. 材料导报, 2018, 32(16): 2803-2808.
[9] 陈茜, 陈庆, 梁永超, 高廷红, 郭笑天, 田泽安, 谢泉, 何帆. 冷速对液态GaAs快速凝固过程中微观结构的影响[J]. 《材料导报》期刊社, 2018, 32(14): 2351-2354.
[10] 吴健, 关庆丰, 蔡杰, 吕鹏, 张从林, 李晨. 脉冲电子束作用下热障涂层微观结构及热循环性能[J]. 《材料导报》期刊社, 2018, 32(13): 2202-2207.
[11] 袁琦, 茶丽梅, 明文全, 杨修波, 李石勇, 韩俊峰. 硒化温度对CIGS/Mo界面微观结构和化学成分的影响[J]. 《材料导报》期刊社, 2018, 32(11): 1787-1790.
[12] 周娩红,陈石林,杨建校,郭建光. 镀铜CF/ABS树脂复合材料的导电性能[J]. 《材料导报》期刊社, 2018, 32(10): 1592-1596.
[13] 李 三,彭小芹,苟 菁,周 淦,黄 婷,陈 洋,王淑萍. 矿物掺合料对地聚合物抗冻性能的影响[J]. 《材料导报》期刊社, 2018, 32(10): 1711-1715.
[14] 弓满锋, 隋广洲, 连海山, 李明圣, 莫德云, 陈健, 伍尚华. 富Co-layers硬质合金表面渗氮处理微观结构和性能研究*[J]. 《材料导报》期刊社, 2017, 31(8): 56-61.
[15] 徐俊杰, 万隆, 宋冬冬, 王俊沙, 李颖颖, 刘莹莹. Cu含量对铝基结合剂及其金刚石工具性能的影响*[J]. 《材料导报》期刊社, 2017, 31(8): 104-108.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed